神经网络的学习(一)

本文介绍了作者在学习神经网络过程中的理解,从神经元的工作原理类比到神经网络的构建,包括监督学习与无监督学习的概念,以及激活函数、损失函数和成本函数在神经网络中的作用。还简单提及了逻辑回归作为二分类问题的示例。
摘要由CSDN通过智能技术生成

前言

最近正在补神经网络方面的功课,为研究生工作打好基础,特地在此记录一下学习过程

其实本人很早以前就在用yolo做视觉处理了,但由于学艺不精只能掉包及调参,因此重新恶补一次,学习资料参考吴恩达老师的视频

概述

神经网络其实就类似我们大脑的神经细胞一样,正好利用下最近学习的神经科学的例子来说明一下

可以看到上图所示的是两个神经细胞之间的信息通信,最上方的树突用来接收信息,相当于系统的 输入
输入后的信号经过细胞体的处理会将信息通过轴突 输出给下一个神经元,这便是一个最简单的神经网络

理解了上述内容,那么映射到我们所要学习的神经网络就不难了

图中的左边是一些已知的先验条件,例如尺寸、房间、消费水平等,我们利用这些先验条件,将其输入给神经网络,它就会像一个个小细胞一样为我们处理出理想的输出

这样有先验条件的神经网络称之为监督学习,一般用在一些已知规律利用机器帮助分类、推理的场合

与之对应的无监督学习则是不知道输入的数据的具体含义,而是无差别地输入给神经网络,让神经网络自己去找寻我们所不知道的规律,这在杀毒、防拦截领域常常用到

组成

一个典型的网络系统包含了输入、网络、输出、激活函数、损失函数、成本函数

这里简单带过一下,等后面学习深入了再慢慢提及

激活函数

激活函数对输出起作用,用来将输出值成一定的数学关系缩放或变换,不同的激活函数有不同的功能

损失函数

损失函数用于度量单次训练时网络的输出和真实值之间的关系,损失函数越小说明系统的鲁棒性越强

成本函数

成本函数简单来讲就是整体训练的度量值,可以理解为损失函数的平均值,也是越小越好

案例

这里先提一下逻辑回归,因为只看到了这QAQ

这是一个简单的二分类算法,即输出只有0和1,因此联系上文不难想到我们需要用一个能把输出限制在0-1之间的激活函数(sigmod函数)

同时这还是一个线性函数,即其满足 y = kx + b

简单的流程就是:先喂给系统已知的输入(X)和对应的输出(Y),然后通过简单的线性函数关系计算出对应的斜率k和常数项b,得到一条 分界线

当然这种说法十分地不专业,比如是如何得到最佳的斜率和常数项呢?(通过梯度下降的原理,找到最佳的斜率和常数项,还要规定学习率)

又或者损失函数和成本函数在哪些地方派上用场呢(分别用来评估系统的性能以及找到最佳的斜率和常数项)

这些我会随着时间推移在后面一点一点地补充,这篇笔记只是做一个小小的概述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值