获取数据科学实习的三个关键技巧:
本文作者分享了获取数据科学实习的三条关键技巧,涵盖了如何获得实习以及如何充分利用实习机会。
技巧一:不要过度担心技术细节。
大多数数据科学实习职位需要你对 Python 或 R 有基本了解,并能进行一些 SQL 查询。 虽然掌握 Pandas、NumPy 和 SciPy 等 Python 包会很有帮助,但实习雇主更看重的是你的热情、学习能力和积极性。
技巧二:选择你真正感兴趣的职位。
实习是探索不同领域和实验你喜欢的项目类型的好机会。对某个领域越热情,你投入的精力和学习意愿就越强。通过你喜欢的领域或项目类型学习数据科学,会让你更有动力,更容易投入其中。
技巧三:利用现有资源,积极拓展人脉。
大多数大学都有工作板,建议你经常查看。同时,也要积极利用社交网络拓展人脉,主动联系感兴趣的公司或导师。
此外,作者还分享了自己在不同公司实习的经验:
- 小型公司通常提供更多元化的项目和更深入的参与机会,让你有机会接触到整个业务流程。
- 大型公司则让你了解大型组织的运作方式,以及数据科学在其中的角色。
作者建议在早期阶段,选择能让你学习更多技能和获得更多经验的实习机会,而不是只关注公司规模或名气。
本视频涵盖了我关于数据科学实习的五大建议。 这些建议将帮助你获得实习机会,并充分利用它。