YouTube 算法揭秘:如何让你的视频脱颖而出
本视频由一位数据科学家讲解 YouTube 算法的运作机制,并分享如何提升视频曝光率的技巧。
核心内容:
- 算法目标: YouTube 算法的目标是让用户尽可能长时间地留在平台上。
- 优化指标: 算法优化的是“预期观看时长”,即点击率(用户点击视频的概率)乘以预期观看时间。
- 推荐机制: 算法通过深度神经网络技术,根据用户的观看历史、搜索记录等信息,推荐最有可能被用户观看的视频。
- 提升曝光率: 为了提高视频曝光率,需要制作吸引眼球的缩略图,并尽量延长用户观看时间。
作者观点:
- 作者认为,YouTube 算法是一个复杂的工程难题,其目的是推荐用户最可能感兴趣的视频。
- 作者通过分析 YouTube 官方白皮书,深入浅出地解释了算法的运作原理,并提供了提升视频曝光率的实用建议。
视频亮点:
- 作者拥有数据科学背景,能够从专业角度解读 YouTube 算法。
- 视频内容通俗易懂,适合不同技术水平的观众。
- 视频提供可操作的建议,帮助用户提升视频曝光率。
建议:
- 观看完整视频,了解更多关于 YouTube 算法的细节。
- 在评论区提出问题,与作者进行互动。
- 关注作者的其他视频,学习更多数据科学知识。
在这个视频中,我将带您了解 YouTube 算法的一些具体细节。 我作为数据科学家的背景可以帮助您更好地理解该算法,并增加它选择您视频的可能性。 该算法希望您尽可能长时间地观看 YouTube。 它优先考虑点击率 (CTR) 和观看时间较高的视频。 当您将这两个指标结合起来时,您将获得预期观看时间。 这是算法在每次推荐时试图优化的变量。 第一阶段接收数百万个视频并将其过滤到不到 1000 个相关视频。 下一阶段根据 YouTube 可以访问的更具体的指标对较小的视频组进行排名。该模型使用两阶段深度神经网络架构。第一阶段接收数百万个视频并将其过滤到不到 1000 个相关视频。下一阶段根据 YouTube 可以访问的更具体的指标对较小的视频组进行排名。成长要点:1) 最大化预期观看时间2) 给予观众观看完整视频的理由3) 制作与特定领域其他视频相似的视频4) 为第 3 天优化视频5) 定期调整内容以利用 A/B 测试