求最大公约数——辗转相除法,更相减损术

最大公因数,也称最大公约数、最大公因子,指两个或多个整数共有约数中最大的一个。我调查发现有两种简单的方法可以求解最大公约数

方法一:辗转相除法,也叫欧几里德算法

设两数为a、b(a>b),求a和b最大公约数(a,b)的步骤如下:用a除以b,得a÷b=q ......r1(0≤r1)。若r1=0,则(a,b)=b;若r1≠0,则再用b除以r1,得b÷r1=q......r(0≤r2).若r2=0,则(a,b)=r1,若r2≠0,则继续用r1除以r2……如此下去,直到能整除为止。其最后一个除数即为(a, b)。

<span style="font-size:14px;">#include <stdio.h>
#include <math.h>

/*辗转相除法*/ 

int gcd(int a,int b){
 	if(a%b==0)
  	    return b;
 	return gcd(b,a%b);
}
int main(void){
 	int a=10,b=8;
 	printf("请输入两个整数,大数在前,以空格分开:\n");
 	scanf("%d %d",&a,&b);
 	printf("GCD: A=>%d, B=>%d (A,B)=%d\n",a,b,gcd(a,b));
 	return 0;
}</span>
<span style="font-size:18px;">分析:递归实现,代码简单,推荐使用</span>

方法二:更相减损术

更相减损术是出自《九章算术》的一种求最大公约数的算法,它原本是为约分而设计的,但它适用于任何需要求最大公约数的场合。
九章算术》是中国古代的数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,原文是:
<em>可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也。以等数约之。</em>
<span style="font-size:14px;">就是 两数先整数2,不能整数了,就大数减去小数,用差和小数相比,再大数减去小数,知道差和小数相等。</span>
代码如下:
#include <stdio.h>
#include <math.h>
//更相减损术 
int main(){
	int a, b, n = 0, tmp;
	printf("请输入两个整数,以空格分开:\n");
	scanf("%d %d", &a, &b);
	while(!(a%2) && !(b%2)){
		a = a/2;
		b = b/2;
		n++; 
	}
	while(a != b){
		if(a>b){
			a = a-b;
		}else{
			b = b-a;
		}
	}
	if(n == 0)
		printf("更相减损术:最大公约数为: %d \n", a);
	else 
		printf("更相减损术:最大公约数为: %d \n", 2*n*a);
	return 0;
} 

原理:两者原理都类似,此处略去。

最大公因数(Greatest Common Divisor, GCD)是指两个或多个整数共有约数中最大的一个。在C语言中,我们通常通过编写函数来计算两个数的最大公约数。 以下是几种常见的解方法: ### 1. **辗转相除法**(欧几里得算法) 这是最常用的两数最大公因数的方法之一。其基本原理在于递归地将较大数字对较小数字取模的结果作为新的输入继续运算,直到余数为零为止。 ```c int gcd(int a, int b) { if (b == 0) return a; else return gcd(b, a % b); } ``` 在这个例子中,如果`b=0`,则直接返回`a`;否则调用自身并传递参数`(b,a%b)`直至满足终止条件。 --- ### 2. **减损** 这种方法基于这样一个事实——当从大数中不断减少小数直到两者等时得到的那个值就是它们的gcd。 例如: ```c int gcd_subtraction(int a, int b){ while(a != b){ if(a > b)a -= b; else b -= a; } return a; // or b since they are equal now. } ``` 这里循环持续运行直到变量 `a` `b` 的数值一致,在这一点上就找到了最大公因子。 --- ### 3. **枚举法** 对于初学者来说可能容易理解的是简单枚举每个潜在因素然后检查是否同时划分了给定的一对方程组成员,并记录最高那个即为我们所找寻的答案。 示例代码如下所示: ```c #include <stdio.h> int main(){ int x = 48,y=18,max,i; for(i=x<y?x:y;i>=1;i--){ if(x%i==0 && y%i==0){max=i;break;} } printf("The GCD of %d and %d is :%d",x,y,max); return 0 ; } ``` 上述程序首先确定比较低的一个值开始尝试寻找共同除尽它的所有正整数因子之中最高的那一位即是最终结果啦~
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值