蓝桥杯-小兰的神秘礼物(DP) 二维数组&一维

本文介绍了如何使用C语言分别通过二维和一维动态规划方法解决背包问题,展示了两种算法在求解最大价值问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

二维

------------------------------------------------------------------------------------------------------------------------------ 

​
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
  // 请在此输入您的代码
  int V;
  scanf("%d",&V);
  int n;
  scanf("%d",&n);
  int x;
  int dp[n+1][V+1];
  //初始化背包容量=0 || 物品没有的情况
  for(int i=0;i<=n;i++)
   dp[i][0]=0;
  for(int j=0;j<=V;j++)
   dp[0][j]=0;
  for(int i=1;i<=n;i++)
  {
    scanf("%d",&x);
    for(int j=1;j<=V;j++)
    {
      if(j>=x)    
      {
        if(x+dp[i-1][j-x]>dp[i-1][j])
        {
          dp[i][j]=x+dp[i-1][j-x];
        }
        else
         dp[i][j]=dp[i-1][j];
      }
      else
       dp[i][j]=dp[i-1][j];
    }
  }
  printf("%d",V-dp[n][V]);
  return 0;
}

​

 ------------------------------------------------------------------------------------------------------------------------------  

一维

#include <stdio.h>
#include <stdlib.h>

int max(int x,int y)
{
  if(x>=y)
   return x;
  else
   return y;
}

int main()
{
  int V;
  scanf("%d",&V);
  int n;
  scanf("%d",&n);
  int x;
  int dp[1005]={0};  //防止数组越界
  for(int i=1;i<=n;i++)
  {
    scanf("%d",&x);
    for(int j=V;j>=x;j--)
    {
      dp[j]=max(dp[j],x+dp[j-x]);
    }
  }
  printf("%d",V-dp[V]);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值