自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

转载 傅立叶分析

傅立叶分析作 者:韩 昊知 乎:Heinrich微 博:@花生油工人知乎专栏:与时间无关的故事谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张晶泊老师。我保证这篇文章和你以前看过的所有文章都不同,这是12年还在果壳的时候写的,但是当时没有来得及写完就出国了……于是拖了两年,嗯,我是拖延症患者……这篇文章的核心思想就是:要让读者在不看任何数学公式的情况下理解傅里叶分析。傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公

2022-04-09 22:53:23 412

原创 卷积神经网络模型

卷积神经网络模型卷积神经网络(LeNet)模型结构:卷积层块, 全链接层块卷积层块:2个卷积层 + 最大池化层 的结构组成。 由于LeNet是较早的CNN, 在每个卷积层 + 池化层后多会跟一个sigmod层 来修正输出结果。 而现在用的较多的是Relu。全连接层块:输入为二维向量。 单卷积层块的输出传入全连接层的时候会对小批量对每个样本进行扁平化(flatten)LeNet 会随着网络的加深,宽度逐渐降低,通道逐渐增多。深度卷积神经网络(AlexNet)模型结构:5层卷积 + 2层全

2022-04-09 22:52:08 11260

原创 Kaggle - 图像分类(CIFAR-10)

Kaggle–图像分类(CIFAR-10) 基于Pytorch的实现CIFAR-10 是计算机视觉领域中一个非常重要的数据集. 它由Hinton的学生Alex Krizhevsky 和 Ilya Sutskever整理的小型数据集. 其中包括 10 个不同类别的RGB 3通道 32 * 32 的图像: 飞机 (airplane)、汽车 (automobile)、鸟类 (bird)、猫 (cat)、鹿(deer)、狗(dog)、蛙类(frog)、马(horse)、船(ship) 和卡车 (truck).

2022-04-09 22:49:54 3140

原创 R语言-dnorm-pnorm-qnorm-rnorm的区别

R语言 dnorm, pnorm, qnorm, rnorm的区别前言dnorm, pnorm, qnorm, rnorm 是R语言中常用的正态分布函数. norm 指的是正态分布(也可以叫高斯分布(normal distribution)), R语言中也有其他不同的分布操作也都类似. p q d r 这里分别指的是不同的函数下面将会详细简介这不同函数在正态分布中的应用以及这是个命令在R中如何使用.dnormd - 指的是概率密度函数(probability density function)正态

2022-04-09 22:48:48 18620 1

转载 ggplot2-cheat-sheet

ggplot2 cheat sheetreferencehttps://www.rstudio.com/resources/cheatsheets/

2022-04-09 22:48:18 665 1

原创 Hexo d部署报错之spawn failed的解决方案

Hexo d部署报错之spawn failed的解决方案关于Hexo部署的时候报错导致无法推送到github估计是很多小伙伴第一次接触Hexo框架编写博客的常见问题, 下面介绍两种解决方案.解决方案(一)在博客文件夹(通常是**\blog**)中删除时 .deploy_git 文件命令行(terminal)[不推荐使用cmd, 使用 git bash 等] 中输入 git config --global core.autocrlf false把git加入系统环境变量重新执行hexo c hex

2022-04-09 22:45:59 3439 9

原创 梯度下降的优化算法

通过之前的学习我们知道通过梯度下降法,我们可以优化模型的参数。 但是如果按照我们之前推断的数学方式直接进行实现的话, 以目前的算力几乎是不可能实现的,甚至说在可见的未来也不太可能。 所以说梯度下降法在上个世纪七十年代就提出来了,直到2012年Alexnet出现才得以应用。 在这期间,科学家们的想法主要是对梯度下降法进行优化。 那么我们先不说科学家是怎么想的,我们自己先...

2022-03-09 14:01:00 483

原创 用最大熵搞懂Softmax

先前我们学习到的sigmoid函数它可以用来解决单一分类问题, 因为sigmoid函数本质上就是把感知机的输出投影到一个区间在\([0,1 ]\)的概率分布中, 但问题是如果我们的分类有多个那么就不能使用sigmoid了, 因为我们虽然可以把每个感知机输出的结果归一但我们无法把整层所以感知机的输出做归一化。这里我们就要引出softmax函数了, 那么它是证明计算的呢?...

2022-02-19 14:29:00 749

原创 如何理解“梯度下降法”?什么是“反向传播”?

本章要解决的问题:梯度到底是什么梯度如何被利用到神经网络中去训练神经网络的什么是反向传播反向传播嘛顾名思义就是把信息反方向的传播的一种方式。在这之前我们先来看什么是正向传播, 神经网络中正向传播其实就是把信息输入神经网络, 信息通过一个一个感知机计算最后输出一个结果,说是感知器实际上就是感知机中的\(W,\,b\)对结果产生的影响。而每个\(W,\,b\)...

2022-02-16 13:25:00 567

原创 交叉熵如何做损失函数?

“最大似然估计”为什么又叫“交叉熵”下面这个是吴恩达大佬在他的课程里面写出来的最大似然估计法的公式,\(y\)是标签值, \(\hat{y}\)是神经网络的估计值。 \[\mathscr{L}\left(\hat{y}, y\right) = -\left(y\log\hat{y} + \left(1-y\right)\log\left(1-\hat{y}\rig...

2022-02-15 15:33:00 450

原创 “损失函数”是如何设计出来的?直观理解“最小二乘法”和“极大似然估计法”...

在吴恩达的课程中提到了两个公式分别是最小二乘法和极大似然估计 \[\mathscr{L}\left(\hat{y}, y\right) = \frac{1}{2}\left(\hat{y}-y\right)^2\]\[\mathscr{L}\left(\hat{y}, y\right) = -\left(y\log\hat{y} + \left(1-y\rig...

2022-02-13 16:42:00 779

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除