随手记——前端面试题解析

今天看别人分享了一个面试题,感觉挺复杂的,大致记录一下分析的过程

	function fun(n, o) {
        console.log(o);
        return{
            fn:function(m){
                return fun(m,n);
            }
        }
    }
    var c = fun(0).fn(1);
    c.fn(2);
    c.fn(3);

从上面的代码可以看出,这个代码的复杂性比较高,一步一步来解析一下
首先定义了c调用了最外层的函数

	var c = fun(0).fn(1)
	// 为了方便理解,我这里会将这个拆成几步来看
	function fun(n, o) { // fun(0) 传入 0 此时n = 0
        console.log(o); // 打印undefined
        return{ // 返回一个对象
            fn:function(m){  // fun(0).fn(1) 传入实参 1, 此时m = 1
                return fun(m,n); // 也就是此时m = 1, n = 0
            }
        }
    }
	// 注意,到了这里还没有结束,现在可以将c理解为
	fn(0){ 
		return fun(1,0)
	} 
	// 接下来继续解析,在上面的代码中我们还可以看到此时还没有执行完毕,得继续执行fun(1,0)函数
	// 此时又返回到了fun函数
	fun(n, o){	 // 执行fun(1,0) 传入实参 n=1,o=0
		console.log(o); // 打印0
        return{ // 继续返回一个对象,但是此时返回的对象并没有执行其中的函数
            fn:function(m){  
                return fun(m,n); // 也就是此时 m = undefined, n = 1
            }
        }
	}
	// 也就是c会得到一个对象,其中有一个未执行的函数fn
	var c = {
		fn:function(m){
			return fun(m,n) // 此时的n = 1
		}
	}

	// 接下来的
	c.fn(2);
		// 相当于调用了c对象中的fn()方法,并传递了实参2,但是由于传递的是第一个参数所以打印的会是第二个参数
		fn(2){
			return fun(2,1)
		}
		// 在fun中执行返回对象
		function fun(n, o) { // fun(2,1) 传入 实参 此时打印 1
        	console.log(o);
       	}
       	// 下面这个也是同样的道理,所以会打印 1
    c.fn(3);

最终打印顺序是的是
在这里插入图片描述
个人的愚见,如过有错漏,希望能够帮忙指出,共同学习进步,谢谢…

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有忆功能,能够捕捉数据中的时间依赖性。 5. **长短期忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值