并查集的原理与应用
并查集是一种树状数据结构,作用是查找或者合并集合。比如查找元素a是否在集合1中、合并集合1与集合2,都可以通过并查集做到。
一、并查集的原理
(一)集合的创建:
并查集是树状数据结构,创建集合的原理是将元素看作结点,将结点连接即可做到创建一个集合。当集合只有一个元素时,该结点与自己连接。在初始化时,我们可以将所有的元素都看作一个集合。
如图:
(二)集合的合并:
合并集合只需要将集合的结点连接即可,一般选用顶端的结点,假设存在集合a和集合b
将a、b合并只需要将ab结点连接即可,如图:
(三)集合的查找:
给出元素e,如何判断它在哪个集合呢?
只需要从e往父结点查找,一直到祖结点即可。e的父结点为c,c的父结点为a,那么可知e在a集合中。
有没有更快的方法呢?
有!路径压缩就是了。我们每次操作完一个结点后就直接将它连接到祖结点上,那么下次操作就方便了。比如查找完e之后,a集合的结构就是这样的:
那么下次查找时就会方便很多。
(四)结点的连接方式:
我们用数组存储元素,比如数字的集合就可以直接利用下标储存元素(其他集合可以再开一个数组储存元素,下标一一对应即可),再将父结点的下标存入数组。
查找p[3]的即为p[2],父结点的下标即为数组的元素。
二、并查集的应用
看看这题:AcWing 836. 合并集合 - AcWing
#include<iostream>
using namespace std;
const int N = 1e5 + 10;
int n, m;
int p[N];
int find(int x)//返回该元素的祖结点
{
if (p[x] != x)p[x] = find(p[x]);
return p[x];
}
int main()
{
cin >> n >> m;
for (int i = 1; i <= n; i++)p[i] = i;
while (m--)
{
char op[2];
int a, b;
cin >> op >> a >> b;
if (op[0] == 'M')p[find(a)] = find(b);//将a与b的祖结点连接
else if (op[0] == 'Q')
{
if (find(a) == find(b))puts("Yes");//如果a和b的祖结点相同,那么说明在同一集合
else puts("No");
}
}
return 0;
}