并查集的原理与应用

并查集的原理与应用

并查集是一种树状数据结构,作用是查找或者合并集合。比如查找元素a是否在集合1中、合并集合1与集合2,都可以通过并查集做到。

一、并查集的原理

(一)集合的创建:

并查集是树状数据结构,创建集合的原理是将元素看作结点,将结点连接即可做到创建一个集合。当集合只有一个元素时,该结点与自己连接。在初始化时,我们可以将所有的元素都看作一个集合。

如图:

a
b
c
d
e
f
g

(二)集合的合并:

合并集合只需要将集合的结点连接即可,一般选用顶端的结点,假设存在集合a和集合b

a
c
d
e
b
f
g

将a、b合并只需要将ab结点连接即可,如图:

a
c
d
e
b
f
g

(三)集合的查找:

a
c
d
e
b
f
g

给出元素e,如何判断它在哪个集合呢?

只需要从e往父结点查找,一直到祖结点即可。e的父结点为c,c的父结点为a,那么可知e在a集合中。

有没有更快的方法呢?

有!路径压缩就是了。我们每次操作完一个结点后就直接将它连接到祖结点上,那么下次操作就方便了。比如查找完e之后,a集合的结构就是这样的:

a
c
d
e

那么下次查找时就会方便很多。

(四)结点的连接方式:

我们用数组存储元素,比如数字的集合就可以直接利用下标储存元素(其他集合可以再开一个数组储存元素,下标一一对应即可),再将父结点的下标存入数组。

p1=1
p2=1
p3=2
p4=1

查找p[3]的即为p[2],父结点的下标即为数组的元素。

二、并查集的应用

看看这题:AcWing 836. 合并集合 - AcWing

#include<iostream>
using namespace std;
const int N = 1e5 + 10;

int n, m;
int p[N];

int find(int x)//返回该元素的祖结点
{
    if (p[x] != x)p[x] = find(p[x]);
    return p[x];
}

int main()
{
    cin >> n >> m;
    for (int i = 1; i <= n; i++)p[i] = i;
    while (m--)
    {
        char op[2];
        int a, b;
        cin >> op >> a >> b;
        if (op[0] == 'M')p[find(a)] = find(b);//将a与b的祖结点连接
        else if (op[0] == 'Q')
        {
            if (find(a) == find(b))puts("Yes");//如果a和b的祖结点相同,那么说明在同一集合
            else puts("No");
        }
    }
    return 0;
}

练习题:837. 连通块中点的数量 - AcWing题库

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值