矩阵快速幂以及其优化【华东交大课程】
快速幂基础:C++快速幂_Kicamon的博客-CSDN博客
矩阵快速幂就是在快速幂的基础上结合矩阵运算的用法,其用途较为广泛,可以很大程度上优化代码。
一、矩阵快速幂的实现
在矩阵快速幂中,我们利用类来存储矩阵及其运算法则。
我们先来看看代码的具体实现,再来讲解其语法。
struct Matrix
{
ll a[N][N];
Matrix()//构造函数
{
memset(a,0,sizeof a);
}
void init()//单元矩阵
{
for(int i = 0;i <= n;i++)
a[i][i] = 1;
}
Matrix operator*(const Matrix& B)const//运算符*的重构
{
Matrix C;
for(int i = 0;i < n;i++)
for(int k = 0;k < n;k++)
for(int j = 0;j < n;j++)
C.a[i][j] = (C.a[i][j] + a[i][k] * B.a[k][j]) % MOD;
return C;
}
Matrix operator^(const int& t)const
{
Matrix A = (*this),res;
res.init();
int p = t;
while(p)
{
if(p & 1)res = res * A;
A = A * A;
p >>= 1;
}
return res;
}
};
-
该结构体使用到的陌生语法有:构造函数、运算符重载和this指针,下边我们来看看着两个语法:
-
构造函数:
构造函数的特点是在结构体或者类中,函数名与结构体名称相同且其声明前方没有返回值。它会在结构体创建的时候自动调用,完成对结构体的初始化。与之对应的是析构函数,作用是对结构体的清除,感兴趣的同学可以自行了解。
-
运算符重载:
- 运算发重载的含义:指的是将已有的运算符赋予新的功能,并通过识别使用是的数据类型和数目来判断采用哪种操作。c/c++中有许多运算符其实已经经过了重构,例如*,在将其作用于地址的时候,它的作用是解引用;将其用于两个数字的时候,它的作用是得到两数的乘积。运算符重载的存在,使得代码可以变得更加简洁易懂。
- 在这里,我们将 * 运算符重载出求两矩阵的积的作用,将 ^ 运算符重载出求矩阵的次方的作用。当然,在 ^ 中我们使用了重载之后的 * 运算符。
-
this指针
- this指针存在于成员函数中,是一个用来指向对象本身地址的指针。例如上面代码中,this指针将该指针所在的结构体本身赋值给了结构体A。
-
二、例题讲解
1、利用矩阵快速幂推导斐波那契数列
在这之前,我们推导斐波那契数列的方法是这样的:
f[1] = f[2] = 1;
for(int i = 3;i <= n;i++)
f[i] = f[i - 1] + f[i - 2];
但是,学了矩阵快速幂之后,我们可以利用另一种方法来推导它:
所以我们可以利用矩阵快速幂先得到状态转换矩阵的n次方,再将其于初始矩阵相乘
#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
const int N = 2, MOD = 1e9 + 7;
struct Matrix
{
ll a[2][2];
Matrix()
{
memset(a, 0, sizeof a);
}
void init()
{
for (int i = 0; i < 2; i++)
a[i][i] = 1;
}
Matrix operator*(const Matrix& B)const
{
Matrix C;
for (int i = 0; i < 2; i++)
for (int k = 0; k