航空路线问题
Description
给定一张航空图,图中顶点代表城市,边代表 2 城市间的直通航线。现要求找出一条满足下述限制条件的且途经城市最多的旅行路线。
(1)从最西端城市出发,单向从西向东途经若干城市到达最东端城市,然后再单向从东向西飞回起点(可途经若干城市)。
(2)除起点城市外,任何城市只能访问 1 次。
对于给定的航空图,试设计一个算法找出一条满足要求的最佳航空旅行路线。
Input
第 1 行有 2 个正整数 N 和 V,N 表示城市数,N<100,V 表示直飞航线数。接下来的 N 行中每一行是一个城市名,可乘飞机访问这些城市。城市名出现的顺序是从西向东。也就是说,设 i,j 是城市表列中城市出现的顺序,当 i>j 时,表示城市 i 在城市 j 的东边,而且不会有 2 个城市在同一条经线上。城市名是一个长度不超过 15 的字符串,串中的字符可以是字母或阿拉伯数字。例如,AGR34 或 BEL4。
再接下来的 V 行中,每行有 2 个城市名,中间用空格隔开,如 city1 city2 表示 city1到 city2 有一条直通航线,从 city2 到 city1 也有一条直通航线。
Output
第 1 行是旅行路线中所访问的城市总数 M。接下来的 M+1 行是旅行路线的城市名,每行写 1 个城市名。首先是出发城市名,然后按访问顺序列出其它城市名。注意,最后 1 行(终点城市)的城市名必然是出发城市名。如果问题无解,则输出“No Solution!”。
Sample Input
8 9
Vancouver
Yellowknife
Edmonton
Calgary
Winnipeg
Toronto
Montreal
Halifax
Vancouver Edmonton
Vancouver Calgary
Calgary Winnipeg
Winnipeg Toronto
Toronto Halifax
Montreal Halifax
Edmonton Montreal
Edmonton Yellowknife
Edmonton Calgary
Sample Output
7
Vancouver
Edmonton
Montreal
Halifax
Toronto
Winnipeg
Calgary
Vancouver
题解
走过去再走回来,可以转化为求两条从1到N的路径。
每个城市只能走一次,所以将每个城市拆成xi和yi,中间从xi向yi连接一条容量为1,费用为1的边。特别的,
<x1,y1>
<script type="math/tex" id="MathJax-Element-1">
</script>和
<xn,yn>
<script type="math/tex" id="MathJax-Element-2">
</script>的容量为2。
如果两个城市间有航线,那么从yi向xj(i < j)连一条容量为1,费用为0的边。
求出x1到yn的最大费用最大流,如果
<x1,y1>
<script type="math/tex" id="MathJax-Element-3">
</script>不满流,那么无解,否则答案为
cost−2
。
特别的,如果1到n有航线,且
<x1,y1>
<script type="math/tex" id="MathJax-Element-5">
</script>不满流,答案即为2,并非无解。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<map>
#include<string>
using namespace std;
const int N = 200 + 10, M = 100000 + 10, inf = 0x3f3f3f3f;
struct Edge{
int fr, to, cap, flow, cost;
}edg[M];
int n, m, tot, s, t;
int hd[N], nxt[M];
int q[N], inq[N], d[N], p[N], a[N];
int o, ok;
string ss;
map<string, int> mp;
void insert(int u, int v, int w, int x){
edg[tot].fr = u, edg[tot].to = v, edg[tot].cap = w, edg[tot].cost = x;
nxt[tot] = hd[u], hd[u] = tot;
if(u == 1 && v == n+1) o = tot;
tot++;
edg[tot].fr = v, edg[tot].to = u, edg[tot].cost = -x;
nxt[tot] = hd[v], hd[v] = tot;
tot++;
}
bool spfa(int &fl, int &cst){
for(int i = s; i <= t; i++) d[i] = -inf;
memset(inq, 0, sizeof(inq));
d[s] = 0; p[s] = 0; a[s] = inf;
int head = 0, tail = 1;
q[0] = s; inq[s] = 1;
while(head != tail){
int u = q[head++]; if(head == 201) head = 0;
inq[u] = 0;
for(int i = hd[u]; i >= 0; i = nxt[i]){
Edge &e = edg[i];
if(e.cap > e.flow && d[e.to] < d[u] + e.cost){
d[e.to] = d[u] + e.cost;
p[e.to] = i;
a[e.to] = min(a[u], e.cap - e.flow);
if(!inq[e.to]){
q[tail++] = e.to; if(tail == 201) tail = 0;
inq[e.to] = 1;
}
}
}
}
if(d[t] == -inf) return false;
fl += a[t];
cst += d[t] * a[t];
int u = t;
while(u != s){
edg[p[u]].flow += a[t];
edg[p[u]^1].flow -= a[t];
u = edg[p[u]].fr;
}
return true;
}
void init(){
scanf("%d%d", &n, &m);
memset(hd, -1, sizeof(hd));
s = 1, t = n * 2;
for(int i = 1; i <= n; i++){
cin>>ss;
mp[ss] = i;
if(i != 1 && i != n) insert(i, i+n, 1, 1);
else insert(i, i+n, 2, 1);
}
for(int i = 1; i <= m; i++){
cin>>ss;
int t1 = mp[ss];
cin>>ss;
int t2 = mp[ss];
if(t1 > t2) swap(t1, t2);
if(t1 == 1 && t2 == n) ok = 1;
insert(n+t1, t2, inf, 0);
}
}
void work(){
int flow = 0, cost = 0;
while(spfa(flow, cost));
if(flow < 2)
if(ok) printf("%d\n", cost);
else puts("No Solution!");
else printf("%d\n", cost-2);
}
int main(){
freopen("prog811.in", "r", stdin);
freopen("prog811.out", "w", stdout);
init();
work();
return 0;
}