网络流24题21. 最长 k 可重区间集问题

最长 k 可重区间集问题

Description

给定实直线 L 上 n 个开区间组成的集合 I,和一个正整数 k,试设计一个算法,从开区间集合 I 中选取出开区间集合 S⊆I,使得在实直线 L 的任何一点 x,S 中包含点 x 的开区间个数不超过 k,且 Σ|z|zs 达到最大。这样的集合 S 称为开区间集合 I 的最长 k 可重区间集。 Σ|z|zs 称为最长 k 可重区间集的长度。
对于给定的开区间集合 I 和正整数 k,计算开区间集合 I 的最长 k 可重区间集的长度。

Input

第 1 行有 2 个正整数 n 和 k,分别表示开区间的个数和开区间的可重迭数。接下来的 n 行,每行有 2 个整数,表示开区间的左右端点坐标。

Output

输出计算出的最长 k 可重区间集的长度。

Sample Input

4 2
1 7
6 8
7 10
9 13

Sample Output

15

题解

搬运的题解,不得不说方法二太巧妙了。。

【问题分析】

最大权不相交路径问题,可以用最大费用最大流解决。

【建模方法】

方法1

按左端点排序所有区间,把每个区间拆分看做两个顶点 <i.a> <script type="math/tex" id="MathJax-Element-65"> </script> <i.b> <script type="math/tex" id="MathJax-Element-66"> </script>,建立附加源S汇T,以及附加顶点S’。

1、连接S到S’一条容量为K,费用为0的有向边。
2、从S’到每个 <i.a> <script type="math/tex" id="MathJax-Element-67"> </script>连接一条容量为1,费用为0的有向边。
3、从每个 <i.b> <script type="math/tex" id="MathJax-Element-68"> </script>到T连接一条容量为1,费用为0的有向边。
4、从每个顶点 <i.a> <script type="math/tex" id="MathJax-Element-69"> </script>到 <i.b> <script type="math/tex" id="MathJax-Element-70"> </script>连接一条容量为1,费用为区间长度的有向边。
5、对于每个区间i,与它右边的不相交的所有区间j各连一条容量为1,费用为0的有向边。

求最大费用最大流,最大费用流值就是最长k可重区间集的长度。

方法2

离散化所有区间的端点,把每个端点看做一个顶点,建立附加源S汇T。

1、从S到顶点1(最左边顶点)连接一条容量为K,费用为0的有向边。
2、从顶点2N(最右边顶点)到T连接一条容量为K,费用为0的有向边。
3、从顶点i到顶点i+1(i+1<=2N),连接一条容量为无穷大,费用为0的有向边。
4、对于每个区间[a,b],从a对应的顶点i到b对应的顶点j连接一条容量为1,费用为区间长度的有向边。

求最大费用最大流,最大费用流值就是最长k可重区间集的长度。

【建模分析】

这个问题可以看做是求K条权之和最大的不相交路径,每条路径为一些不相交的区间序列。由于是最大费用流,两条路径之间一定有一些区间相交,可以看作是相交部分重复了2次,而K条路经就是最多重复了K次。最简单的想法就是把区间排序后,不相交的区间之间连接一条边,由于每个区间只能用一次,所以要拆点,点内限制流量。如果我们改变一下思路,把端点作为网络中的顶点,区间恰恰是特定一些端点之间的边,这样建模的复杂度更小。方法1的边数是O(N^2)的,而方法2的边数是O(N)的,可以解决更大规模的问题。

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 1000 + 10, M = 100000 + 10, inf = 0x3f3f3f3f;
struct Edge{
    int fr, to, cap, flow, cost;
}edg[M];
int nxt[M], hd[N], tot;
int n, k;
int s, t;
int q[N], inq[N], p[N], a[N], d[N];
int l[N], r[N], w[N], hs[N], cnt;
void insert(int u, int v, int w, int x){
    edg[tot].fr = u, edg[tot].to = v, edg[tot].cap = w, edg[tot].flow = 0, edg[tot].cost = x;
    nxt[tot] = hd[u]; hd[u] = tot;
    tot++;
    edg[tot].fr = v, edg[tot].to = u, edg[tot].cap = 0, edg[tot].flow = 0, edg[tot].cost = -x;
    nxt[tot] = hd[v]; hd[v] = tot;
    tot++;
}
bool spfa(int &fl, int &cst){
    for(int i = s; i <= t; i++) d[i] = -inf;
    d[s] = 0; p[s] = 0; a[s] = inf;
    int head = 0, tail = 1;
    q[0] = s; inq[s] = 1;
    while(head != tail){
        int u = q[head++]; if(head == 1001) head = 0;
        inq[u] = 0;
        for(int i = hd[u]; i >= 0; i = nxt[i]){
            Edge &e = edg[i];
            if(d[e.to] < d[u] + e.cost && e.cap > e.flow){
                d[e.to] = d[u] + e.cost;
                p[e.to] = i;
                a[e.to] = min(a[u], e.cap - e.flow);
                if(!inq[e.to]){
                    q[tail++] = e.to; if(tail == 1001) tail = 0;
                    inq[e.to] = 1;
                }
            }
        }
    }
    if(d[t] == -inf) return false;
    fl += a[t];
    cst += a[t] * d[t];
    int u = t;
    while(u != s){
        edg[p[u]].flow += a[t];
        edg[p[u]^1].flow -= a[t];
        u = edg[p[u]].fr;
    }
    return true;
}
void init(){
    scanf("%d%d", &n, &k);
    for(int i = 1; i <= n; i++){
        scanf("%d%d", &l[i], &r[i]);
        w[i] = r[i] - l[i];
        hs[++cnt] = l[i]; hs[++cnt] = r[i];
    }
    sort(hs + 1, hs + cnt + 1);
    for(int i = 1; i <= n; i++){
        l[i] = lower_bound(hs + 1, hs + cnt + 1, l[i]) - hs;
        r[i] = lower_bound(hs + 1, hs + cnt + 1, r[i]) - hs;
    }
}
void build(){
    s = 0, t = n * 2 + 1;
    memset(hd, -1, sizeof(hd));
    insert(s, 1, k, 0); insert(n * 2, t, k, 0);
    for(int i = 1; i < n * 2; i++)
        insert(i, i + 1, inf, 0);
    for(int i = 1; i <= n; i++)
        insert(l[i], r[i], 1, w[i]);
}
void work(){
    build();
    int flow = 0, cost = 0;
    while(spfa(flow, cost));
    printf("%d\n", cost);
}
int main(){
    freopen("prog821.in", "r", stdin);
    freopen("prog821.out", "w", stdout);
    init();
    work();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值