【bzoj1036】[ZJOI2008]树的统计Count

题目连接

Description

  一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w。我们将以下面的形式来要求你对这棵树完成
一些操作: I. CHANGE u t : 把结点u的权值改为t II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值 I
II. QSUM u v: 询问从点u到点v的路径上的节点的权值和 注意:从点u到点v的路径上的节点包括u和v本身

Input

  输入的第一行为一个整数n,表示节点的个数。接下来n – 1行,每行2个整数a和b,表示节点a和节点b之间有
一条边相连。接下来n行,每行一个整数,第i行的整数wi表示节点i的权值。接下来1行,为一个整数q,表示操作
的总数。接下来q行,每行一个操作,以“CHANGE u t”或者“QMAX u v”或者“QSUM u v”的形式给出。
对于100%的数据,保证1<=n<=30000,0<=q<=200000;中途操作中保证每个节点的权值w在-30000到30000之间。

Output

  对于每个“QMAX”或者“QSUM”的操作,每行输出一个整数表示要求输出的结果。

Sample Input

4
1 2
2 3
4 1
4 2 1 3
12
QMAX 3 4
QMAX 3 3
QMAX 3 2
QMAX 2 3
QSUM 3 4
QSUM 2 1
CHANGE 1 5
QMAX 3 4
CHANGE 3 6
QMAX 3 4
QMAX 2 4
QSUM 3 4

Sample Output

4
1
2
2
10
6
5
6
5
16

题解

树链剖分的模板。借鉴黄学长的模板。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 30000 + 10, M = 60000 + 10, inf = 0x3f3f3f3f;
int n, q, tot, sz;
int v[N], dep[N], siz[N], hd[N], fa[N];
int pos[N], bl[N], id[N];
int to[M], nxt[M];
struct Seg{
    int l, r, mx, sum;
}t[M<<1];
void insert(int u, int v){
    to[++tot] = v; nxt[tot] = hd[u]; hd[u] = tot;
    to[++tot] = u; nxt[tot] = hd[v]; hd[v] = tot;
}
inline void in(int &x){
    x = 0; int f = 1; char c = getchar();
    while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); }
    while(c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar(); }
    x *= f;
}
void init(){
    scanf("%d", &n);
    int x, y;
    for(int i = 1; i < n; i++){
        in(x); in(y);
        insert(x, y);
    }
    for(int i = 1; i <= n; i++) in(v[i]);
}
void dfs1(int x){
    siz[x] = 1;
    for(int i = hd[x]; i; i = nxt[i]){
        if(to[i] == fa[x]) continue;
        dep[to[i]] = dep[x] + 1;
        fa[to[i]] = x;
        dfs1(to[i]);
        siz[x] += siz[to[i]];
    }
}
void dfs2(int x, int chain){
    int k = 0;
    pos[x] = ++sz;
    id[pos[x]] = x;
    bl[x] = chain;
    for(int i = hd[x]; i; i = nxt[i])
        if(dep[to[i]] > dep[x] && siz[to[i]] > siz[k])
            k = to[i];
    if(k == 0) return;
    dfs2(k, chain);
    for(int i = hd[x]; i; i = nxt[i])
        if(dep[to[i]] > dep[x] && to[i] != k)
            dfs2(to[i], to[i]);
}
void build(int k, int l, int r){
    t[k].l = l; t[k].r = r;
    if(l == r) {t[k].sum = t[k].mx = v[id[l]]; return; }
    int mid = (l + r) >> 1;
    build(k<<1, l ,mid);
    build(k<<1|1, mid+1, r);
    t[k].sum = t[k<<1].sum + t[k<<1|1].sum;
    t[k].mx = max(t[k<<1].mx, t[k<<1|1].mx);
}
void change(int k, int x, int y){
    int l = t[k].l, r = t[k].r, mid = (l + r) >> 1;
    if(l == r) { t[k].sum = t[k].mx = y; return; }
    if(x <= mid) change(k<<1, x, y);
    else change(k<<1|1, x, y);
    t[k].sum = t[k<<1].sum + t[k<<1|1].sum;
    t[k].mx = max(t[k<<1].mx, t[k<<1|1].mx);
}
int querysum(int k, int x, int y){
    int l = t[k].l, r = t[k].r, mid = (l + r) >> 1;
    if(l == x && y == r) return t[k].sum;
    if(y <= mid) return querysum(k<<1, x, y);
    else if(x > mid) return querysum(k<<1|1, x, y);
    else return querysum(k<<1, x, mid) + querysum(k<<1|1, mid+1, y);
}
int querymx(int k, int x, int y){
    int l = t[k].l, r = t[k].r, mid = (l + r) >> 1;
    if(l == x && y == r) return t[k].mx;
    if(y <= mid) return querymx(k<<1, x, y);
    else if(x > mid) return querymx(k<<1|1, x, y);
    else return max(querymx(k<<1, x, mid), querymx(k<<1|1, mid+1, y));
}
int solvesum(int x, int y){
    int sum = 0;
    while(bl[x] != bl[y]){
        if(dep[bl[x]] < dep[bl[y]]) swap(x, y);
        sum += querysum(1, pos[bl[x]], pos[x]);
        x = fa[bl[x]];
    }
    if(pos[x] > pos[y]) swap(x, y);
    sum += querysum(1, pos[x], pos[y]);
    return sum;
}
int solvemx(int x, int y){
    int mx = -inf;
    while(bl[x] != bl[y]){
        if(dep[bl[x]] < dep[bl[y]]) swap(x, y);
        mx = max(mx, querymx(1, pos[bl[x]], pos[x]));
        x = fa[bl[x]];
    }
    if(pos[x] > pos[y]) swap(x, y);
    mx = max(mx, querymx(1, pos[x], pos[y]));
    return mx;
}
void work(){
    build(1, 1, n);
    scanf("%d", &q);
    char s[10];
    int x, y;
    for(int i = 1; i <= q; i++){
        scanf("%s", s);
        in(x); in(y);
        if(s[0] == 'C') { v[x] = y; change(1, pos[x], y); }
        else if(s[1] == 'M') printf("%d\n", solvemx(x, y));
        else printf("%d\n", solvesum(x, y));
    }
}
void div(){
    dfs1(1);
    dfs2(1, 1);
}
int main(){
    init();
    div();
    work();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值