Description
一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w。我们将以下面的形式来要求你对这棵树完成
一些操作: I. CHANGE u t : 把结点u的权值改为t II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值 I
II. QSUM u v: 询问从点u到点v的路径上的节点的权值和 注意:从点u到点v的路径上的节点包括u和v本身
Input
输入的第一行为一个整数n,表示节点的个数。接下来n – 1行,每行2个整数a和b,表示节点a和节点b之间有
一条边相连。接下来n行,每行一个整数,第i行的整数wi表示节点i的权值。接下来1行,为一个整数q,表示操作
的总数。接下来q行,每行一个操作,以“CHANGE u t”或者“QMAX u v”或者“QSUM u v”的形式给出。
对于100%的数据,保证1<=n<=30000,0<=q<=200000;中途操作中保证每个节点的权值w在-30000到30000之间。
Output
对于每个“QMAX”或者“QSUM”的操作,每行输出一个整数表示要求输出的结果。
Sample Input
4
1 2
2 3
4 1
4 2 1 3
12
QMAX 3 4
QMAX 3 3
QMAX 3 2
QMAX 2 3
QSUM 3 4
QSUM 2 1
CHANGE 1 5
QMAX 3 4
CHANGE 3 6
QMAX 3 4
QMAX 2 4
QSUM 3 4
Sample Output
4
1
2
2
10
6
5
6
5
16
题解
树链剖分的模板。借鉴黄学长的模板。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 30000 + 10, M = 60000 + 10, inf = 0x3f3f3f3f;
int n, q, tot, sz;
int v[N], dep[N], siz[N], hd[N], fa[N];
int pos[N], bl[N], id[N];
int to[M], nxt[M];
struct Seg{
int l, r, mx, sum;
}t[M<<1];
void insert(int u, int v){
to[++tot] = v; nxt[tot] = hd[u]; hd[u] = tot;
to[++tot] = u; nxt[tot] = hd[v]; hd[v] = tot;
}
inline void in(int &x){
x = 0; int f = 1; char c = getchar();
while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); }
while(c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar(); }
x *= f;
}
void init(){
scanf("%d", &n);
int x, y;
for(int i = 1; i < n; i++){
in(x); in(y);
insert(x, y);
}
for(int i = 1; i <= n; i++) in(v[i]);
}
void dfs1(int x){
siz[x] = 1;
for(int i = hd[x]; i; i = nxt[i]){
if(to[i] == fa[x]) continue;
dep[to[i]] = dep[x] + 1;
fa[to[i]] = x;
dfs1(to[i]);
siz[x] += siz[to[i]];
}
}
void dfs2(int x, int chain){
int k = 0;
pos[x] = ++sz;
id[pos[x]] = x;
bl[x] = chain;
for(int i = hd[x]; i; i = nxt[i])
if(dep[to[i]] > dep[x] && siz[to[i]] > siz[k])
k = to[i];
if(k == 0) return;
dfs2(k, chain);
for(int i = hd[x]; i; i = nxt[i])
if(dep[to[i]] > dep[x] && to[i] != k)
dfs2(to[i], to[i]);
}
void build(int k, int l, int r){
t[k].l = l; t[k].r = r;
if(l == r) {t[k].sum = t[k].mx = v[id[l]]; return; }
int mid = (l + r) >> 1;
build(k<<1, l ,mid);
build(k<<1|1, mid+1, r);
t[k].sum = t[k<<1].sum + t[k<<1|1].sum;
t[k].mx = max(t[k<<1].mx, t[k<<1|1].mx);
}
void change(int k, int x, int y){
int l = t[k].l, r = t[k].r, mid = (l + r) >> 1;
if(l == r) { t[k].sum = t[k].mx = y; return; }
if(x <= mid) change(k<<1, x, y);
else change(k<<1|1, x, y);
t[k].sum = t[k<<1].sum + t[k<<1|1].sum;
t[k].mx = max(t[k<<1].mx, t[k<<1|1].mx);
}
int querysum(int k, int x, int y){
int l = t[k].l, r = t[k].r, mid = (l + r) >> 1;
if(l == x && y == r) return t[k].sum;
if(y <= mid) return querysum(k<<1, x, y);
else if(x > mid) return querysum(k<<1|1, x, y);
else return querysum(k<<1, x, mid) + querysum(k<<1|1, mid+1, y);
}
int querymx(int k, int x, int y){
int l = t[k].l, r = t[k].r, mid = (l + r) >> 1;
if(l == x && y == r) return t[k].mx;
if(y <= mid) return querymx(k<<1, x, y);
else if(x > mid) return querymx(k<<1|1, x, y);
else return max(querymx(k<<1, x, mid), querymx(k<<1|1, mid+1, y));
}
int solvesum(int x, int y){
int sum = 0;
while(bl[x] != bl[y]){
if(dep[bl[x]] < dep[bl[y]]) swap(x, y);
sum += querysum(1, pos[bl[x]], pos[x]);
x = fa[bl[x]];
}
if(pos[x] > pos[y]) swap(x, y);
sum += querysum(1, pos[x], pos[y]);
return sum;
}
int solvemx(int x, int y){
int mx = -inf;
while(bl[x] != bl[y]){
if(dep[bl[x]] < dep[bl[y]]) swap(x, y);
mx = max(mx, querymx(1, pos[bl[x]], pos[x]));
x = fa[bl[x]];
}
if(pos[x] > pos[y]) swap(x, y);
mx = max(mx, querymx(1, pos[x], pos[y]));
return mx;
}
void work(){
build(1, 1, n);
scanf("%d", &q);
char s[10];
int x, y;
for(int i = 1; i <= q; i++){
scanf("%s", s);
in(x); in(y);
if(s[0] == 'C') { v[x] = y; change(1, pos[x], y); }
else if(s[1] == 'M') printf("%d\n", solvemx(x, y));
else printf("%d\n", solvesum(x, y));
}
}
void div(){
dfs1(1);
dfs2(1, 1);
}
int main(){
init();
div();
work();
return 0;
}