先上实验报告:
还是比较简单的。
但是开始没有了解过图的遍历,也不知道怎么遍历。
其实也很简单,安利个视频:https://www.bilibili.com/video/av18586085?from=search&seid=6600959381110331126
讲的比较详细。
最小生成树吧,身为一个ACMer,这么简单裸的板子当然好写了。
我用的prim写的,不过没有堆优化。
但是我中间加了个东西,打印建边过程,kruskal加这个东西应该比较简单吧。
prim还是需要思考一下的。
下面代码那个注释图的样子,文本有点不太正。
这样的。
2333
代码:
import java.util.*;
public class Main2 {
public static void main(String[] args) {
Graph g=new Graph(5);
g.addEdge(1, 2,1);
g.addEdge(4, 2,10);
g.addEdge(1, 3,1);
g.addEdge(1, 5,10);
g.addEdge(3, 5,2);
//这个图的样子大概就是
/* 1
* /|\
* 1 / | \10
* / 1| \
* 4---2 3---5
* 10 2
*/
System.out.println("广搜结果:");
g.bfs();
System.out.println("深搜结果:");
g.dfs();
g.prim();
}
}
class Graph{
private int map[][]; //临界矩阵表示图
private int n; //表示节点个数
private boolean used[]; //表示用过的边
public Graph() {}
public Graph(int n) {
this.n=n;
map=new int[n+1][n+1];
used=new boolean[n+1];
}
//=======================================dfs遍历图,但是如果图不连通的话可能遍历不了。
public void dfs() {
for(int i=1;i<=n;i++)
used[i]=false;
dfs(1);
System.out.println();
}
private void dfs(int i) {
used[i]=true;
System.out.print(i+" ");
for(int j=1;j<=n;j++) {
if(map[i][j]!=0&&!used[j]) {
dfs(j);
}
}
}
//========================================bfs遍历图
public void bfs() {
for(int i=1;i<=n;i++)
used[i]=false;
LinkedList<Integer> list=new LinkedList<Integer>();
list.offer(1);
used[1]=true;
while(!list.isEmpty()) {
int t=list.poll();
System.out.print(t+" ");
for(int i=1;i<=n;i++) {
if(map[t][i]!=0&&!used[i]) {
used[i]=true;
list.offer(i);
}
}
}
System.out.println();
}
public void addEdge(int a,int b) {
map[a][b]=map[b][a]=1;
}
public void addEdge(int a,int b,int c) {
map[a][b]=map[b][a]=c;
}
/*
* prim算法其实可以通过优先队列优化到nlogn,但是懒得用了
* 如果套板子的话感觉太无聊
* 然后就想了个主意,不如在计算值的同时加一个判断,中间打印生成树的过程。
* 然后和裸的板子不同,加了个from数组,记录上一个点到这的最小点,然后就完成了这个重大任务。
* 太晚了,应该没有bug
* 加这个小东西,完全是一时兴起(sangxinbingkuang)
* 耽误了不少时间,用了debug
* 其实prim算法挺好的,时间复杂度可以优化到vlogv
* 而kruskal算法的复杂度是eloge
* 空间复杂度上应该就是kruskal比较占优势了。各有好处吧。
* 但是感觉还是prim算法用的比较多
* 身为一个ACMer,表示我半年前就学会最小生成树了2333
*/
public int prim() {
int from[]=new int[n+1];
from[1]=1;
int ans=0;
for(int i=1;i<=n;i++)
used[i]=false;
while(true) {
int t=-1;
//确定一个点,如果这个点的from-to 的value最小,那就优先选择这个点。
for(int i=1;i<=n;i++) {
if(!used[i]&&(t==-1||(map[from[i]][i]<map[from[t]][t]&&from[i]!=0)))
t=i;
}
//如果更新点后t依然是-2,说明没有点更新了。
if(t==-1)
break;
used[t]=true;
if(t!=1)
System.out.println(from[t]+"-->"+t+"="+map[from[t]][t]);
ans+=map[from[t]][t];
//更新一个点后,没用过的节点全部都更新一下from。
for(int i=1;i<=n;i++) {
if(!used[i]&&(from[i]==0||map[t][i]<map[from[i]][i])&&map[t][i]!=0) {
from[i]=t;
}
}
}
System.out.println("最小价值位:"+ans);
return ans;
}
}