时间限制: 1.0 秒
空间限制: 512 MiB
题目描述
顿顿总共选中了 nn 块区域准备开垦田地,由于各块区域大小不一,开垦所需时间也不尽相同。据估算,其中第 ii 块(1≤i≤n1≤i≤n)区域的开垦耗时为 titi 天。这 nn 块区域可以同时开垦,所以总耗时 tTotaltTotal 取决于耗时最长的区域,即:tTotal=max{t1,t2,⋯,tn}tTotal=max{t1,t2,⋯,tn}
为了加快开垦进度,顿顿准备在部分区域投入额外资源来缩短开垦时间。具体来说:
在第 ii 块区域每投入 cici 单位资源,便可将其开垦耗时缩短 11 天;
耗时缩短天数以整数记,即第 ii 块区域投入资源数量必须是 cici 的整数倍;
在第 ii 块区域最多可投入 ci×(ti−k)ci×(ti−k) 单位资源,将其开垦耗时缩短为 kk 天;
这里的 kk 表示开垦一块区域的最少天数,满足 0<k≤min{t1,t2,⋯,tn}0<k≤min{t1,t2,⋯,tn};换言之,如果无限制地投入资源,所有区域都可以用 kk 天完成开垦。
现在顿顿手中共有 mm 单位资源可供使用,试计算开垦 nn 块区域最少需要多少天?
输入格式
从标准输入读入数据。
输入共 n+1n+1 行。
输入的第一行包含空格分隔的三个正整数 nn、mm 和 kk,分别表示待开垦的区域总数、顿顿手上的资源数量和每块区域的最少开垦天数。
接下来 nn 行,每行包含空格分隔的两个正整数 titi 和 cici,分别表示第 ii 块区域开垦耗时和将耗时缩短 11 天所需资源数量。
输出格式
输出到标准输出。
输出一个整数,表示开垦 nn 块区域的最少耗时。
样例1输入
4 9 2 6 1 5 1 6 2 7 1
样例1输出
5
样例1解释
如下表所示,投入 55 单位资源即可将总耗时缩短至 55 天。此时顿顿手中还剩余 44 单位资源,但无论如何安排,也无法使总耗时进一步缩短。
ii 基础耗时 titi 缩减 11 天所需资源 cici 投入资源数量 实际耗时 1 6 1 1 5 2 5 0 3 6 2 2 4 7 1 样例2输入
4 30 2 6 1 5 1 6 2 7 1
样例2输出
2
样例2解释
投入 20 单位资源,恰好可将所有区域开垦耗时均缩短为 k=2天;受限于 k,剩余的 10 单位资源无法使耗时进一步缩短。
子任务
70% 的测试数据满足:0<n,ti,ci≤100 且 0<m≤106;
全部的测试数据满足:0<n,ti,ci≤105 且 0<m≤109。
题解:
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 1e5 + 1;
typedef long long LL;
int main() {
LL n, m, k;
cin >> n >> m >> k;
// 定义数组存储每块区域的耗时和资源消耗
int t[MAXN], c[MAXN];
// 定义数组存储耗时为 i 天的区域的总资源消耗
LL total_cost[MAXN] = {0};
// 记录所有区域中的最大耗时
int max_time = 0;
// 输入每块区域的耗时和资源消耗
for (int i = 0; i < n; i++) {
cin >> t[i] >> c[i];
// 累加耗时为 t[i] 天的区域的总资源消耗
total_cost[t[i]] += c[i];
// 更新最大耗时
max_time = max(max_time, t[i]);
}
// 从最大耗时开始,逐步缩短耗时
for (int i = max_time; i >= k; i--) {
if (m > total_cost[i]) { // 如果剩余资源足够缩短所有耗时为 i 天的区域
if (i == k) { // 如果已经缩短到最小耗时 k
cout << k; // 输出最小耗时
break;
}
// 消耗资源
m -= total_cost[i];
// 将耗时为 i 天的区域缩短为 i-1 天
total_cost[i - 1] += total_cost[i];
} else { // 如果资源不足
cout << i; // 输出当前耗时
break;
}
}
return 0;
}
思路:(贪心)
解决思路
统计总资源消耗:
使用数组
total_cost
,其中total_cost[i]
表示耗时为 ii 天的区域的总资源消耗。遍历所有区域,累加耗时为 titi 天的区域的总资源消耗。
从最大耗时开始缩短:
从所有区域的最大耗时
max_time
开始,逐步缩短耗时。对于每个耗时 ii,检查是否有足够的资源 mm 缩短所有耗时为 ii 天的区域:
如果资源足够,则消耗资源,并将这些区域的耗时缩短为 i−1i−1 天。
如果资源不足,则输出当前耗时 ii 并结束程序。
如果所有区域的耗时都缩短到最小耗时 kk,则输出 kk。