线程池和线程组及其实现

一、线程池

1、线程池概念

       线程池是一种多线程处理形式,处理过程中将任务添加到队列,然后在创建线程后自动启动这些任务。线程池线程都是后台线程。如果某个线程在托管代码中空闲(如正在等待某个事件),则线程池将插入另一个辅助线程来使所有处理器保持繁忙。如果所有线程池线程都始终保持繁忙,但队列中包含挂起的工作,则线程池将在一段时间后创建另一个辅助线程但线程的数目永远不会超过最大值。超过最大值的线程可以排队,但他们要等到其他线程完成后才启动。任务调度以执行线程的常见方法是使用同步队列,称作任务队列池中的线程等待队列中的任务,并把执行完的任务放入完成队列中。线程池可以避免频繁的创建和销毁线程,减少创建的线程个数。

2、线程池适用范围

  • 单位时间内处理任务频繁而且任务处理时间短;
  • 对实时性要求较高。如果接受到任务后在创建线程,可能满足不了实时要求,因此必须采用线程池进行预创建。

3、线程池的实现思想

       管理一个任务队列,一个线程队列,然后每次取一个任务分配给一个线程去做,循环往复。

 

二、线程组

       表示线程的集合,一种对线程进行分组管理的手段,可以对所有线程以组为单位进行操作,如设置优先级、守护线程等。线程组也有父子的概念,如下图:

 

三、实例

(以下实例参考网上,并非完美,略带不足)

1、theadpool.h

#pragma once

#ifndef THREAD_POOL_H
#define THREAD_POOL_H

#include <vector>
#include <queue>
#include <atomic>
#include <future>
//#include <condition_variable>
//#include <thread>
//#include <functional>
#include <stdexcept>

namespace std
{
	//线程池最大容量,应尽量设小一点
#define  THREADPOOL_MAX_NUM 16
//#define  THREADPOOL_AUTO_GROW

//线程池,可以提交变参函数或拉姆达表达式的匿名函数执行,可以获取执行返回值
//不直接支持类成员函数, 支持类静态成员函数或全局函数,Opteron()函数等
	class threadpool
	{
		using Task = function<void()>; //定义类型,类似typedef
		vector<thread> _pool;		   //线程池
		queue<Task> _tasks;            //任务队列
		mutex _lock;                   //同步
		condition_variable _task_cv;   //条件阻塞, 需要配合 unique_lock 使用,可以随时 unlock() 和 lock()
		atomic<bool> _run{ true };     //线程池是否执行,atomic为原子类型,不需要再加mutex
		atomic<int>  _idlThrNum{ 0 };  //空闲线程数量

	public:
		inline threadpool(unsigned short size = 4) { addThread(size); }
		inline ~threadpool()
		{
			_run = false;
			_task_cv.notify_all(); // 唤醒所有线程执行
			for (thread& thread : _pool) {
				//thread.detach(); // 让线程“自生自灭”,即分离主线程和子线程
				if (thread.joinable())	//判断thread是否可以join或者detach
					thread.join(); // 等待任务结束, 前提:线程一定会执行完
			}
		}

	public:
		// 提交一个任务
		// 调用.get()获取返回值会等待任务执行完,获取返回值
		// 有两种方法可以实现调用类成员,
		// 一种是使用   bind: .commit(std::bind(&Dog::sayHello, &dog));
		// 一种是用   mem_fn: .commit(std::mem_fn(&Dog::sayHello), this)
		template<class F, class... Args>
		auto commit(F&& f, Args&&... args) ->future<decltype(f(args...))>
		{
			if (!_run)    // stoped
				throw runtime_error("commit on ThreadPool is stopped.");

			using RetType = decltype(f(args...)); // typename std::result_of<F(Args...)>::type, 函数 f 的返回值类型
			auto task = make_shared<packaged_task<RetType()>>(
				bind(forward<F>(f), forward<Args>(args)...)
				); // 把函数入口及参数,打包(绑定)
			future<RetType> future = task->get_future();
			{    // 添加任务到队列
				lock_guard<mutex> lock{ _lock };//对当前块的语句加锁  lock_guard 是 mutex 的 stack 封装类,构造的时候 lock(),析构的时候 unlock()
				_tasks.emplace([task]() {		// push(Task{...}) 放到队列后面
					(*task)();
				});
			}
#ifdef THREADPOOL_AUTO_GROW
			if (_idlThrNum < 1 && _pool.size() < THREADPOOL_MAX_NUM)
				addThread(1);
#endif // !THREADPOOL_AUTO_GROW
			_task_cv.notify_one(); // 唤醒一个线程执行

			return future;
		}

		//空闲线程数量
		int idlCount() { return _idlThrNum; }

		//线程数量
		int thrCount() { return _pool.size(); }

#ifndef THREADPOOL_AUTO_GROW
	private:
#endif // !THREADPOOL_AUTO_GROW
		//添加指定数量的线程
		void addThread(unsigned short size)
		{
			for (; _pool.size() < THREADPOOL_MAX_NUM && size > 0; --size)
			{   //增加线程数量,但不超过 预定义数量 THREADPOOL_MAX_NUM
				_pool.emplace_back([this] { //工作线程函数
					while (_run)
					{
						Task task; // 获取一个待执行的 task
						{
							// unique_lock 相比 lock_guard 的好处是:可以随时 unlock() 和 lock()
							unique_lock<mutex> lock{ _lock };
							_task_cv.wait(lock, [this] {
								return !_run || !_tasks.empty();
							}); // wait 直到有 task
							if (!_run && _tasks.empty())
								return;
							task = move(_tasks.front()); // 按先进先出从队列取一个 task
							_tasks.pop();
						}
						_idlThrNum--;
						task();//执行任务
						_idlThrNum++;
					}
				});
				_idlThrNum++;
			}
		}
	};

}

#endif 

2、main.cpp

#include "threadpool.h"
#include <iostream>
#include <windows.h>


void fun1(int slp)
{
	printf("  hello, fun1 !  %d\n", std::this_thread::get_id());
	if (slp > 0) {
		printf(" ======= fun1 sleep %d  =========  %d\n", slp, std::this_thread::get_id());
		std::this_thread::sleep_for(std::chrono::milliseconds(slp));
		//Sleep(slp );
	}
}

struct gfun {
	int operator()(int n) {
		printf("%d  hello, gfun !  %d\n", n, std::this_thread::get_id());
		return 42;
	}
};

class A {    //函数必须是 static 的才能使用线程池
public:
	static int Afun(int n = 0) {
		std::cout << n << "  hello, Afun !  " << std::this_thread::get_id() << std::endl;
		return n;
	}

	static std::string Bfun(int n, std::string str, char c) {
		std::cout << n << "  hello, Bfun !  " << str.c_str() << "  " << (int)c << "  " << std::this_thread::get_id() << std::endl;
		return str;
	}
};

int main()
try {
	std::threadpool executor{ 50 };
	A a;
	std::future<void> ff = executor.commit(fun1, 0);
	std::future<int> fg = executor.commit(gfun{}, 0);
	std::future<int> gg = executor.commit(a.Afun, 9999); //IDE提示错误,但可以编译运行
	std::future<std::string> gh = executor.commit(A::Bfun, 9998, "mult args", 123);
	std::future<std::string> fh = executor.commit([]()->std::string { std::cout << "hello, fh !  " << std::this_thread::get_id() << std::endl; return "hello,fh ret !"; });

	std::cout << " =======  sleep ========= " << std::this_thread::get_id() << std::endl;
	std::this_thread::sleep_for(std::chrono::microseconds(900));

	for (int i = 0; i < 50; i++) {
		executor.commit(fun1, i * 100);
	}
	std::cout << " =======  commit all ========= " << std::this_thread::get_id() << " idlsize=" << executor.idlCount() << std::endl;

	std::cout << " =======  sleep ========= " << std::this_thread::get_id() << std::endl;
	std::this_thread::sleep_for(std::chrono::seconds(3));

	ff.get(); //调用.get()获取返回值会等待线程执行完,获取返回值
	std::cout << fg.get() << "  " << fh.get().c_str() << "  " << std::this_thread::get_id() << std::endl;

	std::cout << " =======  sleep ========= " << std::this_thread::get_id() << std::endl;
	std::this_thread::sleep_for(std::chrono::seconds(3));

	std::cout << " =======  fun1,55 ========= " << std::this_thread::get_id() << std::endl;
	executor.commit(fun1, 55).get();    //调用.get()获取返回值会等待线程执行完

	std::cout << "end... " << std::this_thread::get_id() << std::endl;


	std::threadpool pool(4);
	std::vector< std::future<int> > results;

	for (int i = 0; i < 8; ++i) {
		results.emplace_back(
			pool.commit([i] {
			std::cout << "hello " << i << std::endl;
			std::this_thread::sleep_for(std::chrono::seconds(1));
			std::cout << "world " << i << std::endl;
			return i * i;
		})
		);
	}
	std::cout << " =======  commit all2 ========= " << std::this_thread::get_id() << std::endl;

	for (auto && result : results)
		std::cout << result.get() << ' ';
	std::cout << std::endl;
	return 0;
}
catch (std::exception& e) {
	std::cout << "some unhappy happened...  " << std::this_thread::get_id() << e.what() << std::endl;
}

3、实现原理

       “管理一个任务队列,一个线程队列,然后每次取一个任务分配给一个线程去做,循环往复。” 这个思路有神马问题?线程池一般要复用线程,所以如果是取一个 task 分配给某一个 thread,执行完之后再重新分配,在语言层面基本都是不支持的:一般语言的 thread 都是执行一个固定的 task 函数,执行完毕线程也就结束了(至少 c++ 是这样)。so 要如何实现 task 和 thread 的分配呢?

让每一个 thread 都去执行调度函数:循环获取一个 task,然后执行之。

idea 是不是很赞!保证了 thread 函数的唯一性,而且复用线程执行 task 。

即使理解了 idea,代码还是需要详细解释一下的。

(1)一个线程 pool,一个任务队列 queue ,应该没有意见;

(2)任务队列是典型的生产者-消费者模型,本模型至少需要两个工具:一个 mutex + 一个条件变量,或是一个 mutex + 一个信号量。mutex 实际上就是锁,保证任务的添加和移除(获取)的互斥性,一个条件变量是保证获取 task 的同步性:一个 empty 的队列,线程应该等待(阻塞);

(3)atomic<bool> 本身是原子类型,从名字上就懂:它们的操作 load()/store() 是原子操作,所以不需要再加 mutex。

4、C++语言细节

       即使懂原理也不代表能写出程序,上面用了众多c++11的“奇技淫巧”,下面简单描述之。

(1)using Task = function<void()> 是类型别名,简化了 typedef 的用法。function<void()> 可以认为是一个函数类型,接受任意原型是 void() 的函数,或是函数对象,或是匿名函数。void() 意思是不带参数,没有返回值。

(2)pool.emplace_back([this]{...}) 和 pool.push_back([this]{...}) 功能一样,只不过前者性能会更好;

(3)pool.emplace_back([this]{...}) 是构造了一个线程对象,执行函数是拉姆达匿名函数 ;

(4)所有对象的初始化方式均采用了 {},而不再使用 () 方式,因为风格不够一致且容易出错;

(5)匿名函数: [this]{...} 不多说。[] 是捕捉器,this 是引用域外的变量 this指针, 内部使用死循环, 由cv_task.wait(lock,[this]{...}) 来阻塞线程;

(6)delctype(expr) 用来推断 expr 的类型,和 auto 是类似的,相当于类型占位符,占据一个类型的位置;auto f(A a, B b) -> decltype(a+b) 是一种用法,不能写作 decltype(a+b) f(A a, B b),为啥?! c++ 就是这么规定的!

(7)commit 方法是不是略奇葩!可以带任意多的参数,第一个参数是 f,后面依次是函数 f 的参数!(注意:参数要传struct/class的话,建议用pointer,小心变量的作用域) 可变参数模板是 c++11 的一大亮点,够亮!至于为什么是 Arg... 和 arg... ,因为规定就是这么用的!

(8)commit 直接使用只能调用stdcall函数,但有两种方法可以实现调用类成员,一种是使用   bind: .commit(std::bind(&Dog::sayHello, &dog)); 一种是用 mem_fn: .commit(std::mem_fn(&Dog::sayHello), &dog);

(9)make_shared 用来构造 shared_ptr 智能指针。用法大体是 shared_ptr<int> p = make_shared<int>(4) 然后 *p == 4 。智能指针的好处就是, 自动 delete !

(10)bind 函数,接受函数 f 和部分参数,返回currying后的匿名函数,譬如 bind(add, 4) 可以实现类似 add4 的函数!

(11)forward() 函数,类似于 move() 函数,后者是将参数右值化,前者是... 肿么说呢?大概意思就是:不改变最初传入的类型的引用类型(左值还是左值,右值还是右值);

(12)packaged_task 就是任务函数的封装类,通过 get_future 获取 future , 然后通过 future 可以获取函数的返回值(future.get());packaged_task 本身可以像函数一样调用 () ;

(13)queue 是队列类, front() 获取头部元素, pop() 移除头部元素;back() 获取尾部元素,push() 尾部添加元素;

(14)lock_guard 是 mutex 的 stack 封装类,构造的时候 lock(),析构的时候 unlock(),是 c++ RAII 的 idea;

(15)condition_variable cv; 条件变量, 需要配合 unique_lock 使用;unique_lock 相比 lock_guard 的好处是:可以随时 unlock() 和 lock()。 cv.wait() 之前需要持有 mutex,wait 本身会 unlock() mutex,如果条件满足则会重新持有 mutex。

(16)最后线程池析构的时候,join() 可以等待任务都执行完在结束,很安全!

 

参考:

https://blog.csdn.net/zdarks/article/details/46994607
https://www.cnblogs.com/lzpong/p/6397997.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值