[NOIP2012 普及组] 摆花(背包问题)

文章讲述了使用动态规划解决一个编程问题,即在n种花和m个位置中,每种花的摆放不超过特定数量的情况下,计算所有可能的摆放方式。通过将问题转化为01背包问题,利用动态规划数组f[i][j]来计算前i种花在容量为j的背包中的方案数,最终得出摆满m盆花的方案总数。
摘要由CSDN通过智能技术生成

洛谷

acwing

n种花,m个位置,每种花的摆放数量不能超过a[i],一共有多少种摆放的方式
将花盆数量看作背包容量;
将花看作物品,体积是1,第 i种物品最多选 ai个;
将背包装满的方案数是多少
f[i,j]表示前i个物品,体积为j的方案数
f[i,j]=f[i-1,j](不选上种花)+f[i-1,j-1](上一种花选了一朵)+f[i-1,j-2]+...

#include <iostream>
#include <bits/stdc++.h>
#include <algorithm>
#include <sstream>
#include <unordered_map>
#include <set>
#include <queue>
#include <deque>
#include <map>
#include <string>
#include <cstring>

#define x first
#define y second
#define ios ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
using namespace std;

typedef pair<int,int> PII;
typedef pair<char,int> PCI;
typedef long long LL;
typedef unsigned long long ULL;

const int N=110, INF = 0x3f3f3f3f ,mod =1e6 + 7;


// 摆m盆花 ,有n种花,每种花摆的数量不能超过a[i],
// 同种花放在一起 可以将同种花 进行一个打包  ===> 01 背包问题 
int f[N];

void solve()
{
    int n,m;cin>>n>>m;
    f[0] = 1; // 什么花都不摆 也是一种方案 
    for(int i=0;i<n;i ++) 
    {
        int a;cin>>a;
        
        for(int j=m;j>=0;j--)
        for(int k=1;k<=a&& k <=j ;k++) //k 选 第i种 花的数量 
        f[j]=(f[j]+f[j-k] ) % mod;
    }
    
    
    
    cout<< f[m] << endl;
}


int main()
{
    ios 
    int T=1;
//     cin>>T;
    while(T -- )
    {
        solve();
    }    
    
    
    
    
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值