一致性哈希及java实现

1、一致性hash介绍

一致性哈希算法是分布式系统中常用的算法。比如,一个分布式的存储系统,要将数据存储到具体的节点上,如果采用普通的hash方法,将数据映射到具体的节点上,如key%N,key是数据的key,N是机器节点数,如果有一个机器加入或退出这个集群,则所有的数据映射都无效了,如果是持久化存储则要做数据迁移,如果是分布式缓存,则其他缓存就失效了。

    因此,引入了一致性哈希算法:


 

把数据用hash函数(如MD5),映射到一个很大的空间里,如图所示。数据的存储时,先得到一个hash值,对应到这个环中的每个位置,如k1对应到了图中所示的位置,然后沿顺时针找到一个机器节点B,将k1存储到B这个节点中。

如果B节点宕机了,则B上的数据就会落到C节点上,如下图所示:


 

这样,只会影响C节点,对其他的节点A,D的数据不会造成影响。然而,这又会造成一个“雪崩”的情况,即C节点由于承担了B节点的数据,所以C节点的负载会变高,C节点很容易也宕机,这样依次下去,这样造成整个集群都挂了。

       为此,引入了“虚拟节点”的概念:即把想象在这个环上有很多“虚拟节点”,数据的存储是沿着环的顺时针方向找一个虚拟节点,每个虚拟节点都会关联到一个真实节点,如下图所使用:


图中的A1、A2、B1、B2、C1、C2、D1、D2都是虚拟节点,机器A负载存储A1、A2的数据,机器B负载存储B1、B2的数据,机器C负载存储C1、C2的数据。由于这些虚拟节点数量很多,均匀分布,因此不会造成“雪崩”现象。

2、实现原理

web架构中,分布式是个常见的架构设计。尤其是大家比较熟悉的Memcached,或者其他cache产品常常被设计成分布式集群。分布式往往采用hash(key)%n 的方式,但这种算法比较简单,便于实现和理解。但弊端是不能动态增删节点。比较合理的方法改用一致性哈希(consistent hashing)分布。一致性哈希,简单的说在移除 / 添加一个 cache 时,它能够尽可能小的改变已存在 key 映射关系,尽可能的满足单调性的要求。原理不再赘述,google和度娘都能得到答案。重点说一下最常见的实现方式。

 

Java中采用md5散列的方式,计算hash值,这样基本上能保证key散列出啦的hash不会重复。

Java代码   收藏代码
  1. private static long md5HashingAlg(String key) {  
  2.     MessageDigest md5 = MD5.get();  
  3.     md5.reset();  
  4.     md5.update(key.getBytes());  
  5.     byte[] bKey = md5.digest();  
  6.     long res = ((long) (bKey[3] & 0xFF) << 24) | ((long) (bKey[2] & 0xFF) << 16) | ((long) (bKey[1] & 0xFF) << 8)| (long) (bKey[0] & 0xFF);  
  7.     return res;  
  8. }  

在对server节点初始化的时候,为了避免节点过少数据分布不均匀,都会初始化一些虚拟节点。具体方法上面计算hash值的方式类同,一把采用根据权重虚拟出来一些key,具体不过多介绍。

一致性哈希算法中,把哈希值想象成一个环状。有关一致性哈希算法,介绍里面说0~2^32-1的数据,不要误以为哈希环要保存2^32个数据。他只是说,哈希环存的key的哈希值范围是0~2^32-1,并不是key的哈希值要覆盖0~2^32-1所有数据。


既要保存hash值,又要保存对应的节点地址,貌似最简单的就是map,在Java中没有什么map可以满足是个环状。那就找一个排序的,0开头,2^32-1做尾。查找时查到尾没有结果,再返回头找这样可以理解为是个环状了。

在初始化的时候,把节点的hash和节点地址保存在TreeMap里,client查找时,根据key的hash值去treeMap得到自己应该查询的节点,往下查找比自己hash值大的,如果有则得到结果返回。如果没有,则回到treeMap的头,取第一个返回结果。

如图中所示:根据key计算出hash,去treeMap查找比key哈希大的那部分,取出第一个值就是结果。如果没有别key哈希大的部分,则取treeMap的第一个值。


代码的实现:

Java代码   收藏代码
  1. private final Long findPointFor(Long hv) {  
  2.   
  3.         SortedMap<Long, String> tmap = this.consistentBuckets.tailMap(hv);  
  4.   
  5.         return (tmap.isEmpty()) ? this.consistentBuckets.firstKey() : tmap.firstKey();  
  6. }  


3、代码实现

这几天看了几遍一致性哈希的文章,但是都没有比较完整的实现,因此试着实现了一下,这里我就不讲一致性哈希的原理了,网上很多,以一致性哈希用在负载均衡的实例来说,一致性哈希就是先把主机ip从小大到全部放到一个环内,然后客户端ip来连接的时候,把客户端ip连接到大小最接近客户端ip且大于客户端ip的主机。当然,这里的ip一般都是要先hash一下的。我的程序运行结果如下:

    

[java]  view plain copy print ?
  1. 添加客户端,一开始有4个主机,分别为s1,s2,s3,s4,每个主机有100个虚拟主机:  
  2. 101客户端(hash:-3872430075274208315)连接到主机->s2-192.168.1.2  
  3. 102客户端(hash:-6461488502093916753)连接到主机->s1-192.168.1.1  
  4. 103客户端(hash:-3272337528088901176)连接到主机->s3-192.168.1.3  
  5. 104客户端(hash:7274050343425899995)连接到主机->s2-192.168.1.2  
  6. 105客户端(hash:6218187750346216421)连接到主机->s1-192.168.1.1  
  7. 106客户端(hash:-8497989778066313989)连接到主机->s2-192.168.1.2  
  8. 107客户端(hash:2219601794372203979)连接到主机->s3-192.168.1.3  
  9. 108客户端(hash:1903054837754071260)连接到主机->s3-192.168.1.3  
  10. 109客户端(hash:-2425484502654523425)连接到主机->s1-192.168.1.1  
  11. 删除主机s2-192.168.1.2的变化:  
  12. hash(-8497989778066313989)改变到->s4-192.168.1.4  
  13. hash(7274050343425899995)改变到->s2-192.168.1.2  
  14. hash(-3872430075274208315)改变到->s4-192.168.1.4  
  15. hash(7274050343425899995)改变到->s1-192.168.1.1  
  16. 增加主机s5-192.168.1.5的变化:  
  17. hash(1903054837754071260)改变到->s5-192.168.1.5  
  18. hash(1903054837754071260)改变到->s5-192.168.1.5  
  19. hash(-3272337528088901176)改变到->s5-192.168.1.5  
  20. 最后的客户端到主机的映射为:  
  21. hash(-8497989778066313989)连接到主机->s4-192.168.1.4  
  22. hash(-6461488502093916753)连接到主机->s1-192.168.1.1  
  23. hash(-3872430075274208315)连接到主机->s4-192.168.1.4  
  24. hash(-3272337528088901176)连接到主机->s5-192.168.1.5  
  25. hash(-2425484502654523425)连接到主机->s1-192.168.1.1  
  26. hash(1903054837754071260)连接到主机->s5-192.168.1.5  
  27. hash(2219601794372203979)连接到主机->s3-192.168.1.3  
  28. hash(6218187750346216421)连接到主机->s1-192.168.1.1  
  29. hash(7274050343425899995)连接到主机->s1-192.168.1.1  

看结果可知:一开始添加到9个客户端,连接到主机s1,s2,s3,s4的客户端分别有3,3,3,0个,经过删除主机s2,添加主机s5,最后9个客户端分别连接到主机s1,s2,s3,s4,s5的个数为4,0,1,2,2.这里要说明一下删除主机s2的情况,hash尾号为9995的客户端先连接到s2,再连接到s1,为什么会出现这种情况呢?因为每一个真实主机有n个虚拟主机,删除s2却打印“hash(7274050343425899995)改变到->s2-192.168.1.2”是因为删除了s2的其中一个虚拟主机,跳转到另一个虚拟主机,但还是在s2上,当然,这里是打印中间情况,以便了解,真实的环境是删除了s2后,所有他的虚拟节点都会马上被删除,虚拟节点上的连接也会重新连接到另一个主机的虚拟节点,不会存在这种中间情况。

以下给出所有的实现代码,大家共同学习:

[java]  view plain copy print ?
  1. public class Shard<Node> { // S类封装了机器节点的信息 ,如name、password、ip、port等  
  2.   
  3.     static private TreeMap<Long, Node> nodes; // 虚拟节点到真实节点的映射  
  4.     static private TreeMap<Long,Node> treeKey; //key到真实节点的映射  
  5.     static private List<Node> shards = new ArrayList<Node>(); // 真实机器节点  
  6.     private final int NODE_NUM = 100// 每个机器节点关联的虚拟节点个数  
  7.     boolean flag = false;  
  8.       
  9.     public Shard(List<Node> shards) {  
  10.         super();  
  11.         this.shards = shards;  
  12.         init();  
  13.     }  
  14.   
  15.     public static void main(String[] args) {  
  16. //      System.out.println(hash("w222o1d"));  
  17. //      System.out.println(Long.MIN_VALUE);  
  18. //      System.out.println(Long.MAX_VALUE);  
  19.         Node s1 = new Node("s1""192.168.1.1");  
  20.         Node s2 = new Node("s2""192.168.1.2");  
  21.         Node s3 = new Node("s3""192.168.1.3");  
  22.         Node s4 = new Node("s4""192.168.1.4");  
  23.         Node s5 = new Node("s5","192.168.1.5");  
  24.         shards.add(s1);  
  25.         shards.add(s2);  
  26.         shards.add(s3);  
  27.         shards.add(s4);  
  28.         Shard<Node> sh = new Shard<Shard.Node>(shards);  
  29.         System.out.println("添加客户端,一开始有4个主机,分别为s1,s2,s3,s4,每个主机有100个虚拟主机:");  
  30.         sh.keyToNode("101客户端");  
  31.         sh.keyToNode("102客户端");  
  32.         sh.keyToNode("103客户端");  
  33.         sh.keyToNode("104客户端");  
  34.         sh.keyToNode("105客户端");  
  35.         sh.keyToNode("106客户端");  
  36.         sh.keyToNode("107客户端");  
  37.         sh.keyToNode("108客户端");  
  38.         sh.keyToNode("109客户端");  
  39.           
  40.         sh.deleteS(s2);  
  41.           
  42.           
  43.         sh.addS(s5);  
  44.           
  45.         System.out.println("最后的客户端到主机的映射为:");  
  46.         printKeyTree();  
  47.     }  
  48.     public static void printKeyTree(){  
  49.         for(Iterator<Long> it = treeKey.keySet().iterator();it.hasNext();){  
  50.             Long lo = it.next();  
  51.             System.out.println("hash("+lo+")连接到主机->"+treeKey.get(lo));  
  52.         }  
  53.           
  54.     }  
  55.       
  56.     private void init() { // 初始化一致性hash环  
  57.         nodes = new TreeMap<Long, Node>();  
  58.         treeKey = new TreeMap<Long, Node>();  
  59.         for (int i = 0; i != shards.size(); ++i) { // 每个真实机器节点都需要关联虚拟节点  
  60.             final Node shardInfo = shards.get(i);  
  61.   
  62.             for (int n = 0; n < NODE_NUM; n++)  
  63.                 // 一个真实机器节点关联NODE_NUM个虚拟节点  
  64.                 nodes.put(hash("SHARD-" + shardInfo.name + "-NODE-" + n), shardInfo);  
  65.         }  
  66.     }  
  67.     //增加一个主机  
  68.     private void addS(Node s) {  
  69.         System.out.println("增加主机"+s+"的变化:");  
  70.         for (int n = 0; n < NODE_NUM; n++)  
  71.             addS(hash("SHARD-" + s.name + "-NODE-" + n), s);  
  72.   
  73.     }  
  74.       
  75.     //添加一个虚拟节点进环形结构,lg为虚拟节点的hash值  
  76.     public void addS(Long lg,Node s){  
  77.         SortedMap<Long, Node> tail = nodes.tailMap(lg);  
  78.         SortedMap<Long,Node>  head = nodes.headMap(lg);  
  79.         Long begin = 0L;  
  80.         Long end = 0L;  
  81.         SortedMap<Long, Node> between;  
  82.         if(head.size()==0){  
  83.             between = treeKey.tailMap(nodes.lastKey());  
  84.             flag = true;  
  85.         }else{  
  86.             begin = head.lastKey();  
  87.             between = treeKey.subMap(begin, lg);  
  88.             flag = false;  
  89.         }  
  90.         nodes.put(lg, s);  
  91.         for(Iterator<Long> it=between.keySet().iterator();it.hasNext();){  
  92.             Long lo = it.next();  
  93.             if(flag){  
  94.                 treeKey.put(lo, nodes.get(lg));  
  95.                 System.out.println("hash("+lo+")改变到->"+tail.get(tail.firstKey()));  
  96.             }else{  
  97.                 treeKey.put(lo, nodes.get(lg));  
  98.                 System.out.println("hash("+lo+")改变到->"+tail.get(tail.firstKey()));  
  99.             }  
  100.         }  
  101.     }  
  102.       
  103.     //删除真实节点是s  
  104.     public void deleteS(Node s){  
  105.         if(s==null){  
  106.             return;  
  107.         }  
  108.         System.out.println("删除主机"+s+"的变化:");      
  109.         for(int i=0;i<NODE_NUM;i++){  
  110.             //定位s节点的第i的虚拟节点的位置  
  111.             SortedMap<Long, Node> tail = nodes.tailMap(hash("SHARD-" + s.name + "-NODE-" + i));  
  112.             SortedMap<Long,Node>  head = nodes.headMap(hash("SHARD-" + s.name + "-NODE-" + i));  
  113.             Long begin = 0L;  
  114.             Long end = 0L;  
  115.               
  116.             SortedMap<Long, Node> between;  
  117.             if(head.size()==0){  
  118.                 between = treeKey.tailMap(nodes.lastKey());  
  119.                 end = tail.firstKey();  
  120.                 tail.remove(tail.firstKey());  
  121.                 nodes.remove(tail.firstKey());//从nodes中删除s节点的第i个虚拟节点  
  122.                 flag = true;  
  123.             }else{  
  124.                 begin = head.lastKey();  
  125.                 end = tail.firstKey();  
  126.                 tail.remove(tail.firstKey());  
  127.                 between = treeKey.subMap(begin, end);//在s节点的第i个虚拟节点的所有key的集合  
  128.                 flag = false;  
  129.             }  
  130.             for(Iterator<Long> it = between.keySet().iterator();it.hasNext();){  
  131.                 Long lo  = it.next();  
  132.                 if(flag){  
  133.                     treeKey.put(lo, tail.get(tail.firstKey()));  
  134.                     System.out.println("hash("+lo+")改变到->"+tail.get(tail.firstKey()));  
  135.                 }else{  
  136.                     treeKey.put(lo, tail.get(tail.firstKey()));  
  137.                     System.out.println("hash("+lo+")改变到->"+tail.get(tail.firstKey()));  
  138.                 }  
  139.             }  
  140.         }  
  141.           
  142.     }  
  143.   
  144.     //映射key到真实节点  
  145.     public void keyToNode(String key){  
  146.         SortedMap<Long, Node> tail = nodes.tailMap(hash(key)); // 沿环的顺时针找到一个虚拟节点  
  147.         if (tail.size() == 0) {  
  148.             return;  
  149.         }  
  150.         treeKey.put(hash(key), tail.get(tail.firstKey()));  
  151.         System.out.println(key+"(hash:"+hash(key)+")连接到主机->"+tail.get(tail.firstKey()));  
  152.     }  
  153.       
  154.     /** 
  155.      *  MurMurHash算法,是非加密HASH算法,性能很高, 
  156.      *  比传统的CRC32,MD5,SHA-1(这两个算法都是加密HASH算法,复杂度本身就很高,带来的性能上的损害也不可避免) 
  157.      *  等HASH算法要快很多,而且据说这个算法的碰撞率很低. 
  158.      *  http://murmurhash.googlepages.com/ 
  159.      */  
  160.     private static Long hash(String key) {  
  161.           
  162.         ByteBuffer buf = ByteBuffer.wrap(key.getBytes());  
  163.         int seed = 0x1234ABCD;  
  164.           
  165.         ByteOrder byteOrder = buf.order();  
  166.         buf.order(ByteOrder.LITTLE_ENDIAN);  
  167.   
  168.         long m = 0xc6a4a7935bd1e995L;  
  169.         int r = 47;  
  170.   
  171.         long h = seed ^ (buf.remaining() * m);  
  172.   
  173.         long k;  
  174.         while (buf.remaining() >= 8) {  
  175.             k = buf.getLong();  
  176.   
  177.             k *= m;  
  178.             k ^= k >>> r;  
  179.             k *= m;  
  180.   
  181.             h ^= k;  
  182.             h *= m;  
  183.         }  
  184.   
  185.         if (buf.remaining() > 0) {  
  186.             ByteBuffer finish = ByteBuffer.allocate(8).order(  
  187.                     ByteOrder.LITTLE_ENDIAN);  
  188.             // for big-endian version, do this first:  
  189.             // finish.position(8-buf.remaining());  
  190.             finish.put(buf).rewind();  
  191.             h ^= finish.getLong();  
  192.             h *= m;  
  193.         }  
  194.   
  195.         h ^= h >>> r;  
  196.         h *= m;  
  197.         h ^= h >>> r;  
  198.   
  199.         buf.order(byteOrder);  
  200.         return h;  
  201.     }  
  202.       
  203.     static class Node{  
  204.         String name;  
  205.         String ip;  
  206.         public Node(String name,String ip) {  
  207.             this.name = name;  
  208.             this.ip = ip;  
  209.         }  
  210.         @Override  
  211.         public String toString() {  
  212.             return this.name+"-"+this.ip;  
  213.         }  
  214.     }  
  215.   
  216. }

4、关于treeMap的一些方法的介绍

4.1 tailMap()

tailMap(K fromKey) 方法用于返回此映射,其键大于或等于fromKey的部分视图。返回的映射受此映射支持,因此改变返回映射反映在此映射中,反之亦然。

以下是java.util.TreeMap.tailMap()方法的声明。

public SortedMap<K,V> tailMap(K fromKey)
参数
fromKey--返回映射中键的低端点(包括)

返回值

该方法调用返回此映射,其键大于或等于fromKey的部分视图。

例子:

下面的示例演示java.util.TreeMap.tailMap()方法的使用

package com.yiibai;

import java.util.*;

public class TreeMapDemo {
   public static void main(String[] args) {
      // creating maps 
      TreeMap<Integer, String> treemap = new TreeMap<Integer, String>();
      SortedMap<Integer, String> treemapincl = new TreeMap<Integer, String>();
            
      // populating tree map
      treemap.put(2, "two");
      treemap.put(1, "one");
      treemap.put(3, "three");
      treemap.put(6, "six");
      treemap.put(5, "five");      
      
      System.out.println("Getting tail map");
      treemapincl=treemap.tailMap(3);
      System.out.println("Tail map values: "+treemapincl);      
   }    
}

现在编译和运行上面的代码示例,将产生以下结果。

Getting tail map
Tail map values: {3=three, 5=five, 6=six}

4.2 headMap()

headMap(K toKey)  方法用于返回此映射的键严格小于toKey的部分视图。

4.3 java.util.TreeMap类

java.util.TreeMap 类是Red-Black树实现基于Map接口。以下是关于TreeMap中重要的几点:

TreeMap类保证该映射将是升序键顺序。

该映射是按照自然排序方法的关键类,或者根据创建映射时提供的比较器,这将取决于其构造函数中使用排序。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值