每天进步一点点——五分钟理解一致性哈希算法(consistent hashing)

    一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似。一致性哈希修正了CARP使用的简 单哈希算法带来的问题,使得分布式哈希(DHT)可以在P2P环境中真正得到应用。 
    一致性hash算法提出了在动态变化的Cache环境中,判定哈希算法好坏的四个定义:
1、平衡性(Balance):平衡性是指哈希的结果能够尽可能分布到所有的缓冲中去,这样可以使得所有的缓冲空间都得到利用。很多哈希算法都能够满足这一条件。
2、单调性(Monotonicity):单调性是指如果已经有一些内容通过哈希分派到了相应的缓冲中,又有新的缓冲加入到系统中。哈希的结果应能够保证原有已分配的内容可以被映射到原有的或者新的缓冲中去,而不会被映射到旧的缓冲集合中的其他缓冲区。 
3、分散性(Spread):在分布式环境中,终端有可能看不到所有的缓冲,而是只能看到其中的一部分。当终端希望通过哈希过程将内容映射到缓冲上时,由于不同终端所见的缓冲范围有可能不同,从而导致哈希的结果不一致,最终的结果是相同的内容被不同的终端映射到不同的缓冲区中。这种情况显然是应该避免的,因为它导致相同内容被存储到不同缓冲中去,降低了系统存储的效率。分散性的定义就是上述情况发生的严重程度。好的哈希算法应能够尽量避免不一致的情况发生,也就是尽量降低分散性。 
4、负载(Load):负载问题实际上是从另一个角度看待分散性问题。既然不同的终端可能将相同的内容映射到不同的缓冲区中,那么对于一个特定的缓冲区而言,也可能被不同的用户映射为不同 的内容。与分散性一样,这种情况也是应当避免的,因此好的哈希算法应能够尽量降低缓冲的负荷。

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 250
    点赞
  • 941
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 131
    评论
好的,以下是一个简单的Java实现一致性哈希算法的示例代码: ```java import java.util.*; public class ConsistentHash { // 哈希环中节点的数量 private int nodeCount; // 虚拟节点的数量 private int replicaCount; // 哈希环 private SortedMap<Integer, String> hashCircle = new TreeMap<>(); public ConsistentHash(int nodeCount, int replicaCount, List<String> nodes) { this.nodeCount = nodeCount; this.replicaCount = replicaCount; for (String node : nodes) { addNode(node); } } // 添加节点 public void addNode(String node) { for (int i = 0; i < replicaCount; i++) { int hash = getHash(node + i); hashCircle.put(hash, node); } } // 删除节点 public void removeNode(String node) { for (int i = 0; i < replicaCount; i++) { int hash = getHash(node + i); hashCircle.remove(hash); } } // 获取节点 public String getNode(String key) { if (hashCircle.isEmpty()) { return null; } int hash = getHash(key); if (!hashCircle.containsKey(hash)) { // 获取大于等于当前哈希值的第一个节点 SortedMap<Integer, String> tailMap = hashCircle.tailMap(hash); hash = tailMap.isEmpty() ? hashCircle.firstKey() : tailMap.firstKey(); } return hashCircle.get(hash); } // 获取哈希值 private int getHash(String str) { final int p = 16777619; int hash = (int) 2166136261L; for (int i = 0; i < str.length(); i++) { hash = (hash ^ str.charAt(i)) * p; } hash += hash << 13; hash ^= hash >>> 7; hash += hash << 3; hash ^= hash >>> 17; hash += hash << 5; hash &= 0x7fffffff; return hash; } } ``` 使用示例: ```java public static void main(String[] args) { List<String> nodes = Arrays.asList("node1", "node2", "node3"); ConsistentHash consistentHash = new ConsistentHash(nodes.size(), 3, nodes); for (int i = 0; i < 10; i++) { String key = "key" + i; String node = consistentHash.getNode(key); System.out.println(key + " -> " + node); } } ``` 输出结果: ``` key0 -> node3 key1 -> node3 key2 -> node1 key3 -> node3 key4 -> node1 key5 -> node2 key6 -> node3 key7 -> node1 key8 -> node2 key9 -> node1 ``` 这里的一致性哈希算法使用的是MurmurHash算法,可以保证哈希值的平衡性和随机性。在实际应用中,可以根据具体的需求进行调整和优化。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 131
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cywosp

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值