机器学习-深度学习

1、深度学习知识架构

2、线性回归

 

 能够同时预测多个目标,进行多目标学习,通过合并多个任务loss,一般能够产生比单个模型更好的效果。线性回归能够清楚的描述分割线性分布的数据,对非线性分布的数据描述较弱。

3、从线性到非线性-非线性激励

 常用的非线性激励函数:

 (1)Sigmoid

 (2)tahn

 

(3)ReLU(Rectified Linear Units)线性整流函数,又称修正线性单元, 是一种人工神经网络中常用的激活函数(activation function),通常指代以斜坡函数及其变种为代表的非线性函数。

 

 (4)Leaky ReLU 带泄露整流函数

4、神经元-神经网络

 5、神经网络的”配件“

(1)损失函数(Softmax:使分类问题的预测结果更明显;Cross entropy:处理目标为[0,1]区间的回归问题,以及生成)

 (2)学习率(数值大:收敛速度快,数值小:精度高)

如何选用合适的学习率步骤:1.Fixed  2.Step   3.Adagrad   4.RMSprop

(3)动量

正常:x += -learning_rate * dx

另一种:v = mu * v - learning_rate * dx

(4)过拟合

预测的结果好与不好,要看两个因素:bias和variance,如果bias大,variance小,欠拟合;如果bias小,variance大,过拟合;最好结果是bias和variance都小。

过拟合-应对:

①Regularization

 ②Dropout(本质是Regularization)

Dropout每次丢掉一半的一隐藏层神经元,相当于在不同的神经网络上进行训练,减少了神经元之间的依赖性,即每个神经元不能依赖于某几个其他的神经元(指层与层之间相连接的神经元),使神经网络更加能学习到与其他神经元之间的更加健壮的特征。

典型的神经网络其训练流程是将输入通过网络进行正向传导,然后将误差进行反向传播。Dropout

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值