昇思25天学习打卡营第18天|LLM原理和实践-基于MindSpore通过GPT实现情感分类

# 昇思25天学习打卡营第18天|LLM原理和实践-基于MindSpore通过GPT实现情感分类

数据集处理

from mindnlp.dataset import load_dataset
imdb_ds = load_dataset('imdb', split=['train', 'test'])
imdb_train = imdb_ds['train']
imdb_test = imdb_ds['test']
#test
imdb_ds_my = load_dataset('imdb')
train_texts = imdb_ds['text']
# 打印前几个文本示例
for i in range(5):
    print(f"Sample {i+1}: {train_texts[i]}")

# 查看训练集中的字段
train_features = imdb_ds.features

# 打印字段名称和数量
print(f"Number of fields in the training set: {len(train_features)}")
print("Field names in the training set:")
for field in train_features:
    print(field)
import json
import numpy as np

def process_dataset(dataset, tokenizer, max_seq_len=512, batch_size=4, shuffle=False):
    is_ascend = mindspore.get_context('device_target') == 'Ascend'
    def tokenize(text):
        if is_ascend:
            tokenized = tokenizer(text, padding='max_length', truncation=True, max_length=max_seq_len)
        else:
            tokenized = tokenizer(text, truncation=True, max_length=max_seq_len)
        return tokenized['input_ids'], tokenized['attention_mask']

    if shuffle:
        dataset = dataset.shuffle(batch_size)

    # map dataset
    dataset = dataset.map(operations=[tokenize], input_columns="text", output_columns=['input_ids', 'attention_mask'])
    dataset = dataset.map(operations=transforms.TypeCast(mindspore.int32), input_columns="label", output_columns="labels")
    # batch dataset
    if is_ascend:
        dataset = dataset.batch(batch_size)
    else:
        dataset = dataset.padded_batch(batch_size, pad_info={'input_ids': (None, tokenizer.pad_token_id),
                                                             'attention_mask': (None, 0)})

    return dataset
  1. tokenized:分词,将长文本进行分词,转换成id和输入的特征向量
  2. transforms.TypeCast:类型转换,将label由int64 转换成int 32 符合模型的输入
from mindnlp.transformers import GPTTokenizer
# 指定新的缓存目录
cache_dir = './'
# tokenizer
gpt_tokenizer = GPTTokenizer.from_pretrained('openai-gpt',cache_dir=cache_dir)

# add sepcial token: <PAD>
special_tokens_dict = {
    "bos_token": "<bos>",
    "eos_token": "<eos>",
    "pad_token": "<pad>",
}
num_added_toks = gpt_tokenizer.add_special_tokens(special_tokens_dict)
  1. gpt_tokenizer:使用相同的 tokenizer 可以确保在训练和推理过程中数据处理的一致性
  2. 特殊标记确保模型能够正确理解和处理输入数据的开头、结尾和填充部分

构建模型

from mindnlp.transformers import GPTForSequenceClassification
from mindspore.experimental.optim import Adam

# set bert config and define parameters for training
model = GPTForSequenceClassification.from_pretrained('openai-gpt', num_labels=2)
model.config.pad_token_id = gpt_tokenizer.pad_token_id
model.resize_token_embeddings(model.config.vocab_size + 3)

optimizer = nn.Adam(model.trainable_params(), learning_rate=2e-5)

metric = Accuracy()

# define callbacks to save checkpoints
ckpoint_cb = CheckpointCallback(save_path='checkpoint', ckpt_name='gpt_imdb_finetune', epochs=1, keep_checkpoint_max=2)
best_model_cb = BestModelCallback(save_path='checkpoint', ckpt_name='gpt_imdb_finetune_best', auto_load=True)

trainer = Trainer(network=model, train_dataset=dataset_train,
                  eval_dataset=dataset_train, metrics=metric,
                  epochs=1, optimizer=optimizer, callbacks=[ckpoint_cb, best_model_cb],
                  jit=False)
  1. GPTForSequenceClassification.from_pretrained:加载预训练模型,确定分类以及类型数目
  2. config.pad_token_id:确保特殊标记需要在 tokenizer 和模型配置中能够正确匹配
    • model.config 包含了模型的各种配置信息,包括词汇表大小、词嵌入维度、特殊标记的索引等。
    • pad_token_id 是模型配置中一个重要的参数,它表示用于填充输入序列的特殊标记 <pad> 在词汇表中的索引或 ID。
  3. model.resize_token_embeddings():调整模型的词嵌入矩阵大小,确保它可以容纳 tokenizer 扩展后的词汇表大小。这里 model.config.vocab_size 是模型配置中的词汇表大小,+3 是因为我们添加了三个特殊标记 <bos><eos><pad>。vocab_size: Vocabulary size of inputs_ids in BertModel. 词汇表大小。

模型训练

from mindnlp._legacy.engine import Trainer, Evaluator
evaluator = Evaluator(network=model, eval_dataset=dataset_test, metrics=metric)
evaluator.run(tgt_columns="labels")
  1. evaluator.run(tgt_columns=“labels”):评估器将使用 dataset_test 中的 "labels" 列来评估模型的性能。

模型体验

数据集处理

from mindnlp.dataset import load_dataset
imdb_ds = load_dataset('imdb', split=['train', 'test'])
imdb_train = imdb_ds['train']
imdb_test = imdb_ds['test']
#test
imdb_ds_my = load_dataset('imdb')
train_texts = imdb_ds['text']
# 打印前几个文本示例
for i in range(5):
    print(f"Sample {i+1}: {train_texts[i]}")

# 查看训练集中的字段
train_features = imdb_ds.features

# 打印字段名称和数量
print(f"Number of fields in the training set: {len(train_features)}")
print("Field names in the training set:")
for field in train_features:
    print(field)
import json
import numpy as np

def process_dataset(dataset, tokenizer, max_seq_len=512, batch_size=4, shuffle=False):
    is_ascend = mindspore.get_context('device_target') == 'Ascend'
    def tokenize(text):
        if is_ascend:
            tokenized = tokenizer(text, padding='max_length', truncation=True, max_length=max_seq_len)
        else:
            tokenized = tokenizer(text, truncation=True, max_length=max_seq_len)
        return tokenized['input_ids'], tokenized['attention_mask']

    if shuffle:
        dataset = dataset.shuffle(batch_size)

    # map dataset
    dataset = dataset.map(operations=[tokenize], input_columns="text", output_columns=['input_ids', 'attention_mask'])
    dataset = dataset.map(operations=transforms.TypeCast(mindspore.int32), input_columns="label", output_columns="labels")
    # batch dataset
    if is_ascend:
        dataset = dataset.batch(batch_size)
    else:
        dataset = dataset.padded_batch(batch_size, pad_info={'input_ids': (None, tokenizer.pad_token_id),
                                                             'attention_mask': (None, 0)})

    return dataset
  1. tokenized:分词,将长文本进行分词,转换成id和输入的特征向量
  2. transforms.TypeCast:类型转换,将label由int64 转换成int 32 符合模型的输入
from mindnlp.transformers import GPTTokenizer
# 指定新的缓存目录
cache_dir = './'
# tokenizer
gpt_tokenizer = GPTTokenizer.from_pretrained('openai-gpt',cache_dir=cache_dir)

# add sepcial token: <PAD>
special_tokens_dict = {
    "bos_token": "<bos>",
    "eos_token": "<eos>",
    "pad_token": "<pad>",
}
num_added_toks = gpt_tokenizer.add_special_tokens(special_tokens_dict)
  1. gpt_tokenizer:使用相同的 tokenizer 可以确保在训练和推理过程中数据处理的一致性
  2. 特殊标记确保模型能够正确理解和处理输入数据的开头、结尾和填充部分

构建模型

from mindnlp.transformers import GPTForSequenceClassification
from mindspore.experimental.optim import Adam

# set bert config and define parameters for training
model = GPTForSequenceClassification.from_pretrained('openai-gpt', num_labels=2)
model.config.pad_token_id = gpt_tokenizer.pad_token_id
model.resize_token_embeddings(model.config.vocab_size + 3)

optimizer = nn.Adam(model.trainable_params(), learning_rate=2e-5)

metric = Accuracy()

# define callbacks to save checkpoints
ckpoint_cb = CheckpointCallback(save_path='checkpoint', ckpt_name='gpt_imdb_finetune', epochs=1, keep_checkpoint_max=2)
best_model_cb = BestModelCallback(save_path='checkpoint', ckpt_name='gpt_imdb_finetune_best', auto_load=True)

trainer = Trainer(network=model, train_dataset=dataset_train,
                  eval_dataset=dataset_train, metrics=metric,
                  epochs=1, optimizer=optimizer, callbacks=[ckpoint_cb, best_model_cb],
                  jit=False)
  1. GPTForSequenceClassification.from_pretrained:加载预训练模型,确定分类以及类型数目
  2. config.pad_token_id:确保特殊标记需要在 tokenizer 和模型配置中能够正确匹配
    • model.config 包含了模型的各种配置信息,包括词汇表大小、词嵌入维度、特殊标记的索引等。
    • pad_token_id 是模型配置中一个重要的参数,它表示用于填充输入序列的特殊标记 <pad> 在词汇表中的索引或 ID。
  3. model.resize_token_embeddings():调整模型的词嵌入矩阵大小,确保它可以容纳 tokenizer 扩展后的词汇表大小。这里 model.config.vocab_size 是模型配置中的词汇表大小,+3 是因为我们添加了三个特殊标记 <bos><eos><pad>。vocab_size: Vocabulary size of inputs_ids in BertModel. 词汇表大小。

模型训练

from mindnlp._legacy.engine import Trainer, Evaluator
evaluator = Evaluator(network=model, eval_dataset=dataset_test, metrics=metric)
evaluator.run(tgt_columns="labels")
  1. evaluator.run(tgt_columns=“labels”):评估器将使用 dataset_test 中的 "labels" 列来评估模型的性能。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值