1.计算系数
(factor.cpp/c/pas)
【问题描述】给定一个多项式(ax + by)^k,请求出多项式展开后x^n y^m项的系数。
【输入】
输入文件名为 factor.in。
共一行,包含 5 个整数,分别为a,b,k,n,m,每两个整数之间用一个空格隔开。
【输出】
输出文件名为 factor.out。
输出共 1 行,包含一个整数,表示所求的系数,这个系数可能很大,输出对10007 取
模后的结果。
【输入输出样例】
factor.in factor.out
1 1 3 1 2 3
【数据范围】
对于 30%的数据,有0≤k≤10;
对于 50%的数据,有a = 1,b = 1;
对于 100%的数据,有0≤k≤1,000,0≤n, m≤k,且n + m = k,0≤a,b≤1,000,000。
额。。。其实感觉这道题就是纯考高中知识。。然而是不会的。。不过由于考试时老师提了一下,其实也特别简单
多项式(ax + by)^k 求多项式展开后x^n y^m项的系数 n + m = k(这个特别重要)
那我们可以知道他的系数其实就是C(k,n) * a^n * b^m(高中知识,不会百度 google都可以,二项式定理)那么就简单了。。只不过要注意中间过程中有可能会爆,所以边求边取模。。。。
【代码】
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int a, b, k, n, m;
int c[1000 + 5][1000 + 5];
int calc(int i,int j)
{
if(c[i][j] != -1) return c[i][j];
if(i == j || j == 0)
return c[i][j] = 1;
c[i][j] = calc(i - 1, j) + calc(i - 1, j - 1);
c[i][j] %= 10007;
return c[i][j];
}
int main(){
freopen("factor.in", "r", stdin);
freopen("factor.out", "w", stdout);
scanf("%d%d%d%d%d", &a, &b, &k, &n, &m);
memset(c, -1 , sizeof(c));
calc(k, n);
c[k][n] %= 10007;
for(int i = 0; i < n; i++)
{
c[k][n] *= a % 10007;
c[k][n] %= 10007;
}
for(int i = 0; i < m; i++)
{
c[k][n] *= b % 10007;
c[k][n] %= 10007;
}
printf("%d", c[k][n] % 10007);
return 0;
}
2.聪明的质监员
(qc.cpp/c/pas)
【问题描述】
小 T 是一名质量监督员,最近负责检验一批矿产的质量。这批矿产共有n 个矿石,从1
到n 逐一编号,每个矿石都有自己的重量wi 以及价值vi。检验矿产的流程是:
1、给定m 个区间[Li,Ri];
2、选出一个参数W;
3、对于一个区间[Li,Ri],计算矿石在这个区间上的检验值Yi :
这批矿产的检验结果Y 为各个区间的检验值之和。即:
若这批矿产的检验结果与所给标准值S 相差太多,就需要再去检验另一批矿产。小T
不想费时间去检验另一批矿产,所以他想通过调整参数W 的值,让检验结果尽可能的靠近
标准值S,即使得S-Y 的绝对值最小。请你帮忙求出这个最小值。
【输入】
输入文件 qc.in。
全国信息学奥林匹克联赛(NOIP2011)复赛提高组 day2
第 3 页共 4 页
第一行包含三个整数 n,m,S,分别表示矿石的个数、区间的个数和标准值。
接下来的 n 行,每行2 个整数,中间用空格隔开,第i+1 行表示i 号矿石的重量wi 和价
值vi 。
接下来的 m 行,表示区间,每行2 个整数,中间用空格隔开,第i+n+1 行表示区间[Li,
Ri]的两个端点Li 和Ri。注意:不同区间可能重合或相互重叠。
【输出】
输出文件名为 qc.out。
输出只有一行,包含一个整数,表示所求的最小值。
【输入输出样例说明】
当 W 选4 的时候,三个区间上检验值分别为20、5、0,这批矿产的检验结果为25,此
时与标准值S 相差最小为10。
【数据范围】
对于 10%的数据,有1≤n,m≤10;
对于 30%的数据,有1≤n,m≤500;
对于 50%的数据,有1≤n,m≤5,000;
对于 70%的数据,有1≤n,m≤10,000;
对于 100%的数据,有1≤n,m≤200,000,0 < wi, vi≤106,0 < S≤1012,1≤Li≤Ri≤n。
这道题初看比较麻烦,但稍微想想会发现:有多个区间。然后我想到了线段树。。。不过并没有想到具体写法。不过好像听说我们班有人写的线段树。。然后我看到调整W的值!!!于是二分啊啊啊啊!!!刚开始花了几分钟写了个暴力,然后想正解。。
其实对于每一次的W,我们可以知道他的w[j] >= W 的数是固定的,所以我们可以开一个sum[i], cnt[i]来表示从第一个到第i个的满足条件的v[i]的和,还有满足条件的个数,那么我们只需要扫一遍w,就可以计算出sum和cnt, 然后就累加每一次区间的(sum[r[i]] - sum[l[i] - 1]) * (cnt[r[i]] - cnt[l[i] - 1]) ,再判断就好了。。具体看代码(r[i],l[i]表示第i次的区间)
codevs 1138
【代码】
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#define mem(a,x) memset(a, x, sizeof(a))
using namespace std;
int n, m;
long long S;
int w[200000 + 5],v[200000 + 5];
int l[200000 + 5],r[200000 + 5];
long long sum[200000 + 5],cnt[200000 + 5];
long long ans = 1e18;
int maxw = -1;
long long abs1(long long x)
{
return x > 0 ? x : -x;
}
void calc()
{
long long Y = 0;
int left = 0, right = maxw + 200;
while(left < right)
{
int mid = (left + right) >> 1;
mem(sum,0);
mem(cnt,0);
Y = 0;
for(int i = 1; i <= n; i++)
{
if(w[i] >= mid)
{
sum[i] = sum[i - 1] + (long long)v[i];
cnt[i] = cnt[i - 1] + (long long)1;
}
else
{
sum[i] = sum[i - 1];
cnt[i] = cnt[i - 1];
}
}
for(int i = 1; i <= m; i++)
{
long long E1 = cnt[r[i]] - cnt[l[i] - 1];
long long Ev = sum[r[i]] - sum[l[i] - 1];
Y += (E1 * Ev);
}
if(abs1(Y - S) < ans)ans = abs1(Y - S);
if(Y > S)left = mid + 1;
else right = mid;
}
}
int main()
{
freopen("qc.in", "r", stdin);
freopen("qc.out", "w", stdout);
scanf("%d%d%I64d", &n, &m, &S);
for(int i = 1; i <= n; i++)
{
scanf("%d%d", &w[i], &v[i]);
maxw = max(w[i], maxw);
}
for(int i = 1; i <= m; i++)
scanf("%d%d", &l[i], &r[i]);
calc();
printf("%I64d",ans);
return 0;
}
第三题不会不会不会。。 QAQ。。。。。题解下次再写吧