MapReduce的基本原理分析

MapReduce

1.MR的计算流程

计算1T数据中每个单词出现的次数–>wordcount

在这里插入图片描述

1.1原始数据File

  • 1T数据被切分成存放在HDFS上,每一块有128M大小

1.2 数据块Block

  • hdfs上数据存储的一个单元,同一个文件中的大小都是相同的

  • 因为数据存储到HDFS上不可变,所以有可能快的数量和集群的计算能力不匹配

  • 我们需要动态调整本次参与计算节点数量的一个单位

  • 我们可以动态改变这个单位 参与计算的节点

1.3 切片Split

  • 切片是一个逻辑概念

  • 在不改变现在数据存储的情况下,可以控制参与计算的节点数目

  • 通过切片大小可以达到控制计算节点的目的

    • 有多少个切片就会执行多少个MAp任务
  • 一般切边大小为Block的整数倍 2分之一

    • 防止多余创建和很多的数据链接
  • 如果Split>Block 计算节点少了

  • 如果Split<Block 计算节点多了

  • 默认情况下 Split切片的大小等于Block的大小 默认是128M

  • 一个切片对应要给MapTask

<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值