设计并实现一个算法,找出二叉树中某两个节点的第一个共同祖先。不得将其他的节点存储在另外的数据结构中。注意:这不一定是二叉搜索树。
例如,给定如下二叉树: root = [3,5,1,6,2,0,8,null,null,7,4]
3
/ \
5 1
/ \ / \
6 2 0 8
/ \
7 4
示例 1:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出: 3
解释: 节点 5 和节点 1 的最近公共祖先是节点 3。
示例 2:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出: 5
解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。
说明:
所有节点的值都是唯一的。
p、q 为不同节点且均存在于给定的二叉树中。
通过次数19,644提交次数27,383
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/first-common-ancestor-lcci
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
方法:递归
找到首个公共祖先,我们可以分为三种情况:
①p,q分别在左右子树中,这样直接返回root;
②p或者p其中一个为根节点,那么直接返回root;
③在向左/右子树递归的时候,如果其中一个为空,那么说明p,q在同一颗子树中,只要递归该子树即可。
又是承认自己是废物的一天,向大佬学习代码:
作者:z1m
链接:https://leetcode-cn.com/problems/first-common-ancestor-lcci/solution/di-gui-jie-fa-python-3-c-by-z1m/
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def lowestCommonAncestor(self, root: TreeNode, p: TreeNode, q: TreeNode) -> TreeNode:
if not root or root==p or root==q:
return root
left=self.lowestCommonAncestor(root.left,p,q)
right=self.lowestCommonAncestor(root.right,p,q)
if left and right:
return root
if left:
return left
else:
return right