设计背景
在链表(LinkedList)中,每一个节点都存储着一个元素,还有一个指向下一个节点的指针。与这种特性类似,我们把“每一个节点都拥有两个指向不同节点的指针”的结构称之为二叉树(Binary Tree);从形状上来看,这两个指针所指向的节点分别叫做“左子树”(left subtree)和“右子树”(right subtree),而这个节点就是左右子树(亦可称作左右孩子)的父亲节点(father node);位于整棵树顶端的节点称作“根节点”(root node),底部那些没有子树的节点称作“叶子节点”(leaf node)。
二分搜索树(Binary Search Tree)就是一种二叉树(Binary Tree),但二分搜索树中每一个节点的值都必须大于其左子树中的所有节点的值、且小于其右子树中的所有节点的值;因此,与之前探讨的线性数据结构不同,二分搜索树所存储的元素必须具备可比较性,而且不存储重复元素。
综上可知,树形结构在查找元素上可能会表现得极其高效。
结构分析
【结构类型】树形结构
【底层实现】Node模型(元素+左指针+右指针)
【核心方法】
public void add(E e); //向二分搜索树中添加元素
public boolean contains(E e); //判断二分搜索树中有无特定元素
public void preOrder(E e); //前序遍历(深度优先)
public void inOrder(); //中序遍历(深度优先)
public void postOrder(); //后序遍历(深度优先)
public void leverOrder(); //层序遍历(广度优先)
public E minimun(); //寻找二分搜索树的最小元素
public E maximum(); //寻找二分搜索树的最大元素
public E removeMin(); //移除二分搜索树的最小元素
public E removeMax(); //移除二分搜索树的最大元素
public void remove(E e); //移除元素为e的节点
代码实现
public class BST<E extends Comparable<E>> {
/**
* 节点内部类
*/
private class Node {
/**
* 实例域:元素、左/右指针
*/
public E e;
public Node left, right;
/**
* 带参构造器
* @param e 元素
*/
public Node(E e) {
this.e = e;
left = null;
right = null;
}
}
/**
* 实例域:根节点、元素个数
*/
private Node root;
private int size;
/**
* 无参构造器:利用默认值初始化实例域
*/
public BST() {
root = null;
size = 0;
}
/**
* 方法:向二分搜索树添加元素
* @param e 元素
*/
public void add(E e) {
// 调用add方法进行递归操作,将最终返回的结果挂接在root上
root = add(root, e);
}
/**
* 重载方法:针对特定的节点进行添加元素操作
* @param node 节点
* @param e 元素
* @return 添加操作所返回的结果
*/
private Node add(Node node, E e) {
// 判断当前节点是否为空,如果为空则直接初始化为新节点
if (node == null) {
size++;
return new Node(e);
}
// 若当前元素比该节点存储的元素小,则将其向左传递,反之向右
// 将最终返回的结果挂接在该节点的相应方向
if (e.compareTo(node.e) < 0) {
node.left = add(node.left, e);
} else if (e.compareTo(node.e) > 0) {
node.right = add(node.right, e);
}
// 返回当前节点
return node;
}
/**
* 方法:判断二分搜索树中是否包含某元素
* @param e 元素
* @return 若包含则返回true,反之返回false
*/
public boolean contains(E e) {
// 调用contains方法进行递归操作
return</