CVPR2025|底层视觉(超分辨率,图像恢复,去雨,去雾,去模糊,去噪等)相关论文汇总(附论文链接/开源代码)【持续更新】

CVPR2025|底层视觉相关论文汇总(如果觉得有帮助,欢迎点赞和收藏)

整理汇总下2025年底层视觉(Low-Level Vision)相关的论文和代码,括超分辨率,图像去雨,图像去雾,去模糊,去噪,图像恢复,图像增强,图像去摩尔纹,图像修复,图像质量评价,插帧,图像/视频压缩等任务,具体如下。

最新修改版本会首先更新在Github,欢迎star,fork和PR~
也欢迎对底层视觉任务感兴趣的朋友一块更新~
GithubAwesome-CVPR2025-Low-Level-Vision
知乎https://zhuanlan.zhihu.com/p/27720923412
参考或转载请注明出处

CVPR2025官网:https://cvpr.thecvf.com/Conferences/2025

CVPR接收论文列表:https://cvpr.thecvf.com/Conferences/2025/AcceptedPapers

CVPR完整论文库:

开会时间:2025月6月11日-2025月6月15日

论文接收公布时间:2025年2月27日

【Contents】

1.超分辨率(Super-Resolution)

Adaptive Dropout: Unleashing Dropout across Layers for Generalizable Image Super-Resolution

  • Paper:
  • Code: https://github.com/xuhang07/Adpative-Dropout

ADD: A General Attribution-Driven Data Augmentation Framework for Boosting Image Super-Resolution

  • Paper:
  • Code:

Adversarial Diffusion Compression for Real-World Image Super-Resolution

  • Paper: https://arxiv.org/abs/2411.13383
  • Code: https://github.com/Guaishou74851/AdcSR

Arbitrary-steps Image Super-resolution via Diffusion Inversion

  • Paper: https://arxiv.org/abs/2412.09013
  • Code: https://github.com/zsyOAOA/InvSR

Augmenting Perceptual Super-Resolution via Image Quality Predictors

  • Paper:
  • Code:

Auto-Enocded Supervision for Perceptual Image Super-Resolution

  • Paper: https://arxiv.org/abs/2412.00124
  • Code: https://github.com/2minkyulee/AESOP-Auto-Encoded-Supervision-for-Perceptual-Image-Super-Resolution

AutoLUT: LUT-Based Image Super-Resolution with Automatic Sampling and Adaptive Residual Learning

  • Paper: https://arxiv.org/abs/2503.01565
  • Code: https://github.com/SuperKenVery/AutoLUT

BF-STVSR: B-Splines and Fourier-Best Friends for High Fidelity Spatial-Temporal Video Super-Resolution

  • Paper: https://arxiv.org/abs/2501.11043
  • Code: https://github.com/Eunjnnn/bfstvsr

CATANet: Efficient Content-Aware Token Aggregation for Lightweight Image Super-Resolution

  • Paper: https://arxiv.org/abs/2503.06896
  • Code: https://github.com/EquationWalker/CATANet

Decoupling Fine Detail and Global Geometry for Compressed Depth Map Super-Resolution

  • Paper: https://arxiv.org/abs/2411.03239
  • Code:

DifIISR: Diffusion Model with Gradient Guidance for Infrared Image Super-Resolution

  • Paper: https://www.arxiv.org/abs/2503.01187
  • Code: https://github.com/zirui0625/DifIISR

DORNet: A Degradation Oriented and Regularized Network for Blind Depth Super-Resolution

  • Paper: https://arxiv.org/abs/2410.11666
  • Code: https://github.com/yanzq95/dornet

Edge-SD-SR: Low Latency and Parameter Efficient On-device Super-Resolution with Stable Diffusion via Bidirectional Conditioning

  • Paper: https://arxiv.org/abs/2412.06978
  • Code:

Efficient Video Super-Resolution for Real-time Rendering with Decoupled G-buffer Guidance

  • Paper:
  • Code: https://github.com/sunny2109/RDG

EvEnhancer: Empowering Effectiveness, Efficiency and Generalizability for Continuous Space-Time Video Super-Resolution with Events

  • Paper:
  • Code:

Event-based Video Super-Resolution via State Space Models

  • Paper:
  • Code:

Exploring Semantic Feature Discrimination for Perceptual Image Super-Resolution and Opinion-Unaware No-Reference Image Quality Assessment

  • Paper:
  • Code:

FaithDiff: Unleashing Diffusion Priors for Faithful Image Super-resolution

  • Paper: https://arxiv.org/abs/2411.18824
  • Code: https://github.com/JyChen9811/FaithDiff

HIIF: Hierarchical Encoding based Implicit Image Function for Continuous Super-resolution

  • Paper: https://arxiv.org/abs/2412.03748v1
  • Code:

Latent space Super-Resolution for Higher-Resolution Image Generation with Diffusion Models

  • Paper:
  • Code:

PassionSR: Post-Training Quantization with Adaptive Scale in One-Step Diffusion based Image Super-Resolution

  • Paper: https://arxiv.org/abs/2411.17106
  • Code: https://github.com/libozhu03/PassionSR

PatchVSR: Breaking Video Diffusion Resolution Limits with Patch-wise Video Super-Resolution

  • Paper:
  • Code:

PIDSR: Complementary Polarized Image Demosaicing and Super-Resolution

  • Paper:
  • Code:

Pixel-level and Semantic-level Adjustable Super-resolution: A Dual-LoRA Approach

  • Paper: https://arxiv.org/abs/2412.03017
  • Code: https://github.com/csslc/PiSA-SR

Progressive Focused Transformer for Single Image Super-Resolution

  • Paper:
  • Code:

QMambaBSR: Burst Image Super-Resolution with Query State Space Model

  • Paper: https://arxiv.org/abs/2408.08665
  • Code:

S2Gaussian: Sparse-View Super-Resolution 3D Gaussian Splatting

  • Paper: https://arxiv.org/abs/2503.04314v1
  • Code:

Self-supervised ControlNet with Spatio-Temporal Mamba for Real-world Video Super-resolution

  • Paper:
  • Code:

The Power of Context: How Multimodality Improves Image Super-Resolution

  • Paper: https://arxiv.org/abs/2503.14503
  • Code:

TSD-SR: One-Step Diffusion with Target Score Distillation for Real-World Image Super-Resolution

  • Paper: https://arxiv.org/abs/2411.18263
  • Code: https://github.com/Microtreei/TSD-SR

TSP-Mamba: The Travelling Salesman Problem Meets Mamba for Image Super-resolution and Beyond

  • Paper:
  • Code:

Uncertainty-guided Perturbation for Image Super-Resolution Diffusion Model

  • Paper:
  • Code:

VideoGigaGAN: Towards Detail-rich Video Super-Resolution

  • Paper: https://arxiv.org/abs/2404.12388
  • Code:

Volume Tells: Dual Cycle-Consistent Diffusion for 3D Fluorescence Microscopy De-noising and Super-Resolution

  • Paper: https://arxiv.org/abs/2503.02261
  • Code:

2.图像去雨(Image Deraining)

Channel Consistency Prior and Self-Reconstruction Strategy Based Unsupervised Image Deraining

  • Paper:
  • Code:

Semi-Supervised State-Space Model with Dynamic Stacking Filter for Real-World Video Deraining

  • Paper:
  • Code:

3.图像去雾(Image Dehazing)

CoA: Towards Real Image Dehazing via Compression-and-Adaptation

  • Paper:
  • Code: https://github.com/fyxnl/COA

Iterative Predictor-Critic Code Decoding for Real-World Image Dehazing

  • Paper: https://arxiv.org/abs/2503.13147
  • Code: https://github.com/Jiayi-Fu/IPC-Dehaze

Learning Hazing to Dehazing: Towards Realistic Haze Generation for Real-World Image Dehazing

  • Paper:
  • Code:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值