CVPR2025|底层视觉相关论文汇总(如果觉得有帮助,欢迎点赞和收藏)
- 1.超分辨率(Super-Resolution)
-
-
- Adaptive Dropout: Unleashing Dropout across Layers for Generalizable Image Super-Resolution
- ADD: A General Attribution-Driven Data Augmentation Framework for Boosting Image Super-Resolution
- Adversarial Diffusion Compression for Real-World Image Super-Resolution
- Arbitrary-steps Image Super-resolution via Diffusion Inversion
- Augmenting Perceptual Super-Resolution via Image Quality Predictors
- Auto-Enocded Supervision for Perceptual Image Super-Resolution
- AutoLUT: LUT-Based Image Super-Resolution with Automatic Sampling and Adaptive Residual Learning
- BF-STVSR: B-Splines and Fourier-Best Friends for High Fidelity Spatial-Temporal Video Super-Resolution
- CATANet: Efficient Content-Aware Token Aggregation for Lightweight Image Super-Resolution
- Decoupling Fine Detail and Global Geometry for Compressed Depth Map Super-Resolution
- DifIISR: Diffusion Model with Gradient Guidance for Infrared Image Super-Resolution
- DORNet: A Degradation Oriented and Regularized Network for Blind Depth Super-Resolution
- Edge-SD-SR: Low Latency and Parameter Efficient On-device Super-Resolution with Stable Diffusion via Bidirectional Conditioning
- Efficient Video Super-Resolution for Real-time Rendering with Decoupled G-buffer Guidance
- EvEnhancer: Empowering Effectiveness, Efficiency and Generalizability for Continuous Space-Time Video Super-Resolution with Events
- Event-based Video Super-Resolution via State Space Models
- Exploring Semantic Feature Discrimination for Perceptual Image Super-Resolution and Opinion-Unaware No-Reference Image Quality Assessment
- FaithDiff: Unleashing Diffusion Priors for Faithful Image Super-resolution
- HIIF: Hierarchical Encoding based Implicit Image Function for Continuous Super-resolution
- Latent space Super-Resolution for Higher-Resolution Image Generation with Diffusion Models
- PassionSR: Post-Training Quantization with Adaptive Scale in One-Step Diffusion based Image Super-Resolution
- PatchVSR: Breaking Video Diffusion Resolution Limits with Patch-wise Video Super-Resolution
- PIDSR: Complementary Polarized Image Demosaicing and Super-Resolution
- Pixel-level and Semantic-level Adjustable Super-resolution: A Dual-LoRA Approach
- Progressive Focused Transformer for Single Image Super-Resolution
- QMambaBSR: Burst Image Super-Resolution with Query State Space Model
- S2Gaussian: Sparse-View Super-Resolution 3D Gaussian Splatting
- Self-supervised ControlNet with Spatio-Temporal Mamba for Real-world Video Super-resolution
- The Power of Context: How Multimodality Improves Image Super-Resolution
- TSD-SR: One-Step Diffusion with Target Score Distillation for Real-World Image Super-Resolution
- TSP-Mamba: The Travelling Salesman Problem Meets Mamba for Image Super-resolution and Beyond
- Uncertainty-guided Perturbation for Image Super-Resolution Diffusion Model
- VideoGigaGAN: Towards Detail-rich Video Super-Resolution
- Volume Tells: Dual Cycle-Consistent Diffusion for 3D Fluorescence Microscopy De-noising and Super-Resolution
-
- 2.图像去雨(Image Deraining)
- 3.图像去雾(Image Dehazing)
-
-
- CoA: Towards Real Image Dehazing via Compression-and-Adaptation
- Iterative Predictor-Critic Code Decoding for Real-World Image Dehazing
- Learning Hazing to Dehazing: Towards Realistic Haze Generation for Real-World Image Dehazing
- Tokenize Image Patches: Global Context Fusion for Effective Haze Removal in Large Images
-
- 4.去模糊(Deblurring)
-
-
- A Polarization-aided Transformer for Image Deblurring via Motion Vector Decomposition
- Deblurring Low-light Images via Event-guided Hourglass Network
- DynaMoDe-NeRF: Motion-aware Deblurring Neural Radiance Field for Dynamic Scenes
- DiET-GS: Diffusion Prior and Event Stream-Assisted Motion Deblurring 3D Gaussian Splatting
- Diffusion-based Event Generation for High-Quality Image Deblurring
- Efficient Visual State Space Model for Image Deblurring
- Exploiting Deblurring Networks for Radiance Fields
- Gyro-based Neural Single Image Deblurring
- Parameterized Blur Kernel Prior Learning for Local Motion Deblurring
- Quad-Pixel Image Defocus Deblurring: A New Benchmark and Model
-
- 5.去噪(Denoising)
-
-
- All-Optical Nonlinear Diffractive Deep Network for Ultrafast Image Denoising
- BEVDiffuser: Plug-and-Play Diffusion Model for BEV Denoising with Ground-Truth Guidance
- Blind-Spot Real-world Image Denoising via Implicit Neural Pixel Resampling
- Classic Video Denoising in a Machine Learning World: Robust, Fast, and Controllable
- Complementary Advantages: Exploiting Cross-Field Frequency Correlation for NIR-Assisted Image Denoising
- DnLUT: Ultra-Efficient Color Image Denoising via Channel-Aware Lookup Tables
- Noise Modeling in One Hour: Minimizing Preparation Efforts for Self-supervised Low-Light RAW Image Denoising
- Patient-Level Anatomy Meets Scanning-Level Physics: Personalized Federated Low-Dose CT Denoising Empowered by Large Language Model
- Positive2Negative: Breaking the Information-Lossy Barrier in Self-Supervised Single Image Denoising
- Rethinking Reconstruction and Denoising in the Dark: New Perspective, General Architecture and Beyond
- Rotation-Equivariant Self-Supervised Method in Image Denoising
- SuperPC: A Single Diffusion Model for Point Cloud Completion, Upsampling, Denoising, and Colorization
-
- 6.图像恢复(Image Restoration)
-
-
- ACL: Activating Capability of Linear Attention for Image Restoration
- Acquire and then Adapt: Squeezing out Text-to-Image Model for Image Restoration
- Adapting Text-to-Image Generation with Feature Difference Instruction for Generic Image Restoration
- A Regularization-Guided Equivariant Approach for Image Restoration
- Complexity Experts are Task-Discriminative Learners for Any Image Restoration
- DarkIR: Robust Low-Light Image Restoration
- Degradation-Aware Feature Perturbation for All-in-One Image Restoration
- Dual Prompting for Image Restoration across Full-Scene with Diffusion Transformers
- Dynamic Content Prediction with Motion-aware Priors for Blind Face Video Restoration
- FiRe: Fixed-points of Restoration Priors for Solving Inverse Problems
- From Zero to Detail: Deconstructing Ultra-High-Definition Image Restoration from Progressive Spectral Perspective
- GenDeg: Diffusion-Based Degradation Synthesis for Generalizable All-in-One Image Restoration
- Hazy Low-Quality Satellite Video Restoration Via Learning Optimal Joint Degradation Patterns and Continuous-Scale Super-Resolution Reconstruction
- Inverting Flow for Image Restoration
- JarvisIR: Elevating Autonomous Driving Perception with Intelligent Image Restoration
- LP-Diff: Towards Improved Restoration of Real-World Degraded License Plate
- MaIR: A Locality- and Continuity-Preserving Mamba for Image Restoration
- Making Old Film Great Again: Degradation-aware State Space Model for Old Film Restoration
- MambaIRv2: Attentive State Space Restoration
- Navigating Image Restoration with VAR’s Distribution Alignment Prior
- OSDFace: One-Step Diffusion Model for Face Restoration
- Plug-and-Play Proximal Restoration Priors for Single-Pixel Imaging
- SeedVR: Seeding Infinity in Diffusion Transformer Towards Generic Video Restoration
- Sparse Image Sets Restoration with Multi-View Diffusion Model
- SVFR: A Unified Framework for Generalized Video Face Restoration
- Reconciling Stochastic and Deterministic Strategies for Zero-shot Image Restoration using Diffusion Model in Dual
- UHD-processer: Unified UHD Image Restoration with Progressive Frequency Learning and Degradation-aware Prompts
- UniRestore: Unified Perceptual and Task-Oriented Image Restoration Model Using Diffusion Prior
- URWKV: Unified RWKV Model with Multi-state Perspective for Low-light Image Restoration
- Visual-Instructed Degradation Diffusion for All-in-One Image Restoration
- VolFormer: Explore More Comprehensive Cube Interaction for Hyperspectral Image Restoration and Beyond
- Zero-Shot Image Restoration Using Few-Step Guidance of Consistency Models (and Beyond)
-
- 7.图像增强(Image Enhancement)
-
-
- 3DEnhancer: Consistent Multi-View Diffusion for 3D Enhancement
- Efficient Diffusion as Low Light Enhancer
- Efficient Video Face Enhancement with Enhanced Spatial-Temporal Consistency
- HVI: A New Color Space for Low-light Image Enhancement
- Noise Calibration and Spatial-Frequency Interactive Network for STEM Image Enhancement
-
- 8.图像修复(Inpainting)
-
-
- 3D Gaussian Inpainting with Depth-Guided Cross-View Consistency
- A T ^\text{T} TA: Adaptive Transformation Agent for Text-Guided Subject-Position Variable Background Inpainting
- AuraFusion360: Augmented Unseen Region Alignment for Reference-based 360° Unbounded Scene Inpainting
- DefectFill: Realistic Defect Generation with Inpainting Diffusion Model for Visual Inspection
- HomoGen: Enhanced Video Inpainting via Homography Propagation and Diffusion
- IMFine: 3D Inpainting via Geometry-guided Multi-view Refinement
- Instant3dit: Multiview Inpainting for Fast Editing of 3D Objects
- Large-Scale Text-to-Image Model with Inpainting is a Zero-Shot Subject-Driven Image Generator
- MTADiffusion: Mask Text Alignment Diffusion Model for Object Inpainting
- RAD: Region-Aware Diffusion Models for Image Inpainting
- Self-Supervised Large Scale Point Cloud Completion for Archaeological Site Restoration
- SVDC: Consistent Direct Time-of-Flight Video Depth Completion with Frequency Selective Fusion
- Towards Context-Stable and Hue-Consistent Image Inpainting
- TurboFill: Adapting Few-step Text-to-image Model for Fast Image Inpainting
- VideoRepainter: Creative Video Inpainting with Keyframe Reference
-
- 9.高动态范围成像(HDR Imaging)
- 10.图像质量评价(Image Quality Assessment)
-
-
- Exploring Semantic Feature Discrimination for Perceptual Image Super-Resolution and Opinion-Unaware No-Reference Image Quality Assessment
- FineVQ: Fine-Grained User Generated Content Video Quality Assessment
- Teaching Large Language Models to Regress Accurate Image Quality Scores using Score Distribution
- Toward Generalized Image Quality Assessment: Relaxing the Perfect Reference Quality Assumption
-
- 11.插帧(Frame Interpolation)
- 12.视频/图像压缩(Video/Image Compression)
- 13.压缩图像/视频质量增强(Compressed Image/Video Quality Enhancement)
- 14.图像去反光(Image Reflection Removal)
- 15.图像去阴影(Image Shadow Removal)
- 16.图像上色(Image Colorization)
- 17.图像和谐化(Image Harmonization)
- 18.视频稳相(Video Stabilization)
- 19.图像融合(Image Fusion)
- 20.其他任务(Others)
-
-
- Binarized Semantic Mamba-Transformer for Lightweight Quad Bayer HybridEVS Demosaicing
- Continuous Adverse Weather Removal via Degradation-Aware Distillation
- Point Cloud Upsampling Using Conditional Diffusion Module with Adaptive Noise Suppression
- U-Know-DiffPAN: An Uncertainty-aware Knowledge Distillation Diffusion Framework with Details Enhancement for PAN-Sharpening
-
整理汇总下2025年底层视觉(Low-Level Vision)相关的论文和代码,括超分辨率,图像去雨,图像去雾,去模糊,去噪,图像恢复,图像增强,图像去摩尔纹,图像修复,图像质量评价,插帧,图像/视频压缩等任务,具体如下。
最新修改版本会首先更新在Github,欢迎star,fork和PR~
也欢迎对底层视觉任务感兴趣的朋友一块更新~
Github:Awesome-CVPR2025-Low-Level-Vision
知乎:https://zhuanlan.zhihu.com/p/27720923412
参考或转载请注明出处
CVPR2025官网:https://cvpr.thecvf.com/Conferences/2025
CVPR接收论文列表:https://cvpr.thecvf.com/Conferences/2025/AcceptedPapers
CVPR完整论文库:
开会时间:2025月6月11日-2025月6月15日
论文接收公布时间:2025年2月27日
【Contents】
- 1.超分辨率(Super-Resolution)
- 2.图像去雨(Image Deraining)
- 3.图像去雾(Image Dehazing)
- 4.去模糊(Deblurring)
- 5.去噪(Denoising)
- 6.图像恢复(Image Restoration)
- 7.图像增强(Image Enhancement)
- 8.图像修复(Inpainting)
- 9.高动态范围成像(HDR Imaging)
- 10.图像质量评价(Image Quality Assessment)
- 11.插帧(Frame Interpolation)
- 12.视频/图像压缩(Video/Image Compression)
- 13.压缩图像质量增强(Compressed Image Quality Enhancement)
- 14.图像去反光(Image Reflection Removal)
- 15.图像去阴影(Image Shadow Removal)
- 16.图像上色(Image Colorization)
- 17.图像和谐化(Image Harmonization)
- 18.视频稳相(Video Stabilization)
- 19.图像融合(Image Fusion)
- 20.其他任务(Others)
1.超分辨率(Super-Resolution)
Adaptive Dropout: Unleashing Dropout across Layers for Generalizable Image Super-Resolution
- Paper:
- Code: https://github.com/xuhang07/Adpative-Dropout
ADD: A General Attribution-Driven Data Augmentation Framework for Boosting Image Super-Resolution
- Paper:
- Code:
Adversarial Diffusion Compression for Real-World Image Super-Resolution
- Paper: https://arxiv.org/abs/2411.13383
- Code: https://github.com/Guaishou74851/AdcSR
Arbitrary-steps Image Super-resolution via Diffusion Inversion
- Paper: https://arxiv.org/abs/2412.09013
- Code: https://github.com/zsyOAOA/InvSR
Augmenting Perceptual Super-Resolution via Image Quality Predictors
- Paper:
- Code:
Auto-Enocded Supervision for Perceptual Image Super-Resolution
- Paper: https://arxiv.org/abs/2412.00124
- Code: https://github.com/2minkyulee/AESOP-Auto-Encoded-Supervision-for-Perceptual-Image-Super-Resolution
AutoLUT: LUT-Based Image Super-Resolution with Automatic Sampling and Adaptive Residual Learning
- Paper: https://arxiv.org/abs/2503.01565
- Code: https://github.com/SuperKenVery/AutoLUT
BF-STVSR: B-Splines and Fourier-Best Friends for High Fidelity Spatial-Temporal Video Super-Resolution
- Paper: https://arxiv.org/abs/2501.11043
- Code: https://github.com/Eunjnnn/bfstvsr
CATANet: Efficient Content-Aware Token Aggregation for Lightweight Image Super-Resolution
- Paper: https://arxiv.org/abs/2503.06896
- Code: https://github.com/EquationWalker/CATANet
Decoupling Fine Detail and Global Geometry for Compressed Depth Map Super-Resolution
- Paper: https://arxiv.org/abs/2411.03239
- Code:
DifIISR: Diffusion Model with Gradient Guidance for Infrared Image Super-Resolution
- Paper: https://www.arxiv.org/abs/2503.01187
- Code: https://github.com/zirui0625/DifIISR
DORNet: A Degradation Oriented and Regularized Network for Blind Depth Super-Resolution
- Paper: https://arxiv.org/abs/2410.11666
- Code: https://github.com/yanzq95/dornet
Edge-SD-SR: Low Latency and Parameter Efficient On-device Super-Resolution with Stable Diffusion via Bidirectional Conditioning
- Paper: https://arxiv.org/abs/2412.06978
- Code:
Efficient Video Super-Resolution for Real-time Rendering with Decoupled G-buffer Guidance
- Paper:
- Code: https://github.com/sunny2109/RDG
EvEnhancer: Empowering Effectiveness, Efficiency and Generalizability for Continuous Space-Time Video Super-Resolution with Events
- Paper:
- Code:
Event-based Video Super-Resolution via State Space Models
- Paper:
- Code:
Exploring Semantic Feature Discrimination for Perceptual Image Super-Resolution and Opinion-Unaware No-Reference Image Quality Assessment
- Paper:
- Code:
FaithDiff: Unleashing Diffusion Priors for Faithful Image Super-resolution
- Paper: https://arxiv.org/abs/2411.18824
- Code: https://github.com/JyChen9811/FaithDiff
HIIF: Hierarchical Encoding based Implicit Image Function for Continuous Super-resolution
- Paper: https://arxiv.org/abs/2412.03748v1
- Code:
Latent space Super-Resolution for Higher-Resolution Image Generation with Diffusion Models
- Paper:
- Code:
PassionSR: Post-Training Quantization with Adaptive Scale in One-Step Diffusion based Image Super-Resolution
- Paper: https://arxiv.org/abs/2411.17106
- Code: https://github.com/libozhu03/PassionSR
PatchVSR: Breaking Video Diffusion Resolution Limits with Patch-wise Video Super-Resolution
- Paper:
- Code:
PIDSR: Complementary Polarized Image Demosaicing and Super-Resolution
- Paper:
- Code:
Pixel-level and Semantic-level Adjustable Super-resolution: A Dual-LoRA Approach
- Paper: https://arxiv.org/abs/2412.03017
- Code: https://github.com/csslc/PiSA-SR
Progressive Focused Transformer for Single Image Super-Resolution
- Paper:
- Code:
QMambaBSR: Burst Image Super-Resolution with Query State Space Model
- Paper: https://arxiv.org/abs/2408.08665
- Code:
S2Gaussian: Sparse-View Super-Resolution 3D Gaussian Splatting
- Paper: https://arxiv.org/abs/2503.04314v1
- Code:
Self-supervised ControlNet with Spatio-Temporal Mamba for Real-world Video Super-resolution
- Paper:
- Code:
The Power of Context: How Multimodality Improves Image Super-Resolution
- Paper: https://arxiv.org/abs/2503.14503
- Code:
TSD-SR: One-Step Diffusion with Target Score Distillation for Real-World Image Super-Resolution
- Paper: https://arxiv.org/abs/2411.18263
- Code: https://github.com/Microtreei/TSD-SR
TSP-Mamba: The Travelling Salesman Problem Meets Mamba for Image Super-resolution and Beyond
- Paper:
- Code:
Uncertainty-guided Perturbation for Image Super-Resolution Diffusion Model
- Paper:
- Code:
VideoGigaGAN: Towards Detail-rich Video Super-Resolution
- Paper: https://arxiv.org/abs/2404.12388
- Code:
Volume Tells: Dual Cycle-Consistent Diffusion for 3D Fluorescence Microscopy De-noising and Super-Resolution
- Paper: https://arxiv.org/abs/2503.02261
- Code:
2.图像去雨(Image Deraining)
Channel Consistency Prior and Self-Reconstruction Strategy Based Unsupervised Image Deraining
- Paper:
- Code:
Semi-Supervised State-Space Model with Dynamic Stacking Filter for Real-World Video Deraining
- Paper:
- Code:
3.图像去雾(Image Dehazing)
CoA: Towards Real Image Dehazing via Compression-and-Adaptation
- Paper:
- Code: https://github.com/fyxnl/COA
Iterative Predictor-Critic Code Decoding for Real-World Image Dehazing
- Paper: https://arxiv.org/abs/2503.13147
- Code: https://github.com/Jiayi-Fu/IPC-Dehaze
Learning Hazing to Dehazing: Towards Realistic Haze Generation for Real-World Image Dehazing
- Paper:
- Code:

最低0.47元/天 解锁文章
714

被折叠的 条评论
为什么被折叠?



