不同路径

不同路径

题目:
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

问总共有多少条不同的路径?

在这里插入图片描述
例如,上图是一个7 x 3 的网格。有多少可能的路径?

示例 1:

输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。

  1. 向右 -> 向右 -> 向下
  2. 向右 -> 向下 -> 向右
  3. 向下 -> 向右 -> 向右
    示例 2:

输入: m = 7, n = 3
输出: 28

解题思路:首先思考终点可以怎么到达,只能是终点的上方或者终点的左方到达,再思考终点的上方和终点的左方可以怎么到达,会发现这是一个重复子问题,并且终点的到达方式 = 到达终点的上方方式 + 到达终点的左方方式

class Solution {
    public int uniquePaths(int m, int n) {
        //数组定义
        //dp[i][j]表示到第i + 1行 i + 1列有多少种方式
        int dp[][] = new int[m][n];
        
        //初始化
        dp[0][0] = 1;   //起点
        for(int i = 0; i < m; i++) {
            //因为只能向右或者向下所以每行第一列只有一种到达方式
            dp[i][0] = 1;
        }
        
        for(int i = 0; i < n; i++) {
            //同上
            dp[0][i] = 1;
        }
        
        /**
        状态方程 dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
        **/
        for(int i = 1; i < m; i++) {
            for(int j = 1; j < n; j++) {
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
        
        return dp[m - 1][n - 1];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值