491. 递增子序列
看上去和 90. 组合II 非常相似,同样是同一集合内的子集。但是,本题的递增是由原序列决定的,所以不能对序列排序!题中的例子 [4, 7, 6, 7]
,如果排序后变成了 [4, 6, 7, 7]
,[4, 6, 7, 7]
也成为了一个递增子序列,但不符合题目要求。
回忆之前的定义,这里需要的是同一层的去重(40. 组合总和II),即同一层上遇到重复的元素值就直接跳过即可(其产生的结果必然是第一次遇到该值的结果的子集);path 的去重仅限元素,可以允许元素值的重复。
- 相同父节点下,同一层使用过的元素值不能再用(直接跳过)
- 同一 path 上的值必须(非严格)递增
- 并非所有结果都在叶子上,收集结果时不要直接 return
以此可以推出回溯的三要素:
- 参数和返回值:两个经典全局变量;一个额外的参数
start_idx
来记录当前起点,因为组合显然不能重复使用元素。 - 终止条件:每一条 path 的结束仅有两种可能 1)到达数组结尾; 2)当前 path 不符合要求。实际上可以不特意设置终止条件,在 for loop 中会自动结束。
- 处理符合条件的 path 时不能返回!
- 单层搜索:相同父节点下,同一层使用过的元素值不能再用。所以在同一层(for loop)内,保存一个本地变量,记录当前层使用过的元素值。
这里的 used 数组(层级记录)只记录当前层的使用情况(for loop),它的存在不会跟着递归改变,也就不用回溯。这和之前的 used 数组有巨大的区别,因为之前的 used 记录了 path 上的使用,所以要跟着 path 进行递归+回溯。
优化:在单层搜索中,用来记录当前层使用过的元素值的变量,符合直觉的应该是一个 set,这样可以轻松判断当前元素值是否已经出现过。但 set 用作哈希时,insert 的操作会很耗时,用 list 作为哈希容器会更好,因为本题中限定了数值范围 [-100, 100]
。
class Solution:
def __init__(self):
self.curr_record = []
self.results = []
def backtrack(self, nums: List[int], start_idx: int):
if len(self.curr_record) >= 2:
self.results.append(self.curr_record.copy())
loop_used = [False] * 201
for i in range(start_idx, len(nums)):
if len(self.curr_record) > 0 and nums[i] < self.curr_record[-1]: # the current elemet is making decreasing
continue
if loop_used[nums[i] + 100]: # this element has been used
continue
self.curr_record.append(nums[i])
loop_used[nums[i] + 100] = True
self.backtrack(nums, i + 1)
self.curr_record.pop()
def findSubsequences(self, nums: List[int]) -> List[List[int]]:
self.backtrack(nums, 0)
return self.results
本题的重点在于,去重的记录是同一节点下的同一层,是在 for loop 而非 path 上的记录,所以无需回溯,这点一定要分清楚。
46. 全排列
排列和组合/子集最大的区别在于:start_idx
不再通用了!
在排列问题中,已经使用过的元素并不会在 for loop 的下一个 iteration 中禁用,而是仅在当前递归的 path 中禁用(需要根据 path 进行递归+回溯)。这导致我们不再依靠 start_idx
来进行去重,而是完全依靠使用记录。
- 参数和返回值:两个经典全局变量;不再需要
start_idx
。 - 终止条件:只有叶子节点才会包含符合条件的排列结果,所以当前收集的 path 长度等于原数组时,意味着可以储存当前结果了。
- 单层搜索:不再改变
start_idx
,而是依靠使用记录 used 数组来决定下一次递归中能使用的元素(递归的变化更隐蔽了,每层都是从头到尾,变化的是使用记录)。
class Solution:
def __init__(self):
self.curr_record = []
self.results = []
def backtrack(self, nums: List[int], used_nums: List[int]):
if len(used_nums) == len(nums):
self.results.append(self.curr_record.copy())
return None
for num in nums:
if num not in used_nums:
self.curr_record.append(num)
used_nums.append(num)
self.backtrack(nums, used_nums)
self.curr_record.pop()
used_nums.pop()
def permute(self, nums: List[int]) -> List[List[int]]:
self.backtrack(nums, [])
return self.results
优化
因为本题设置了输入数据的范围 [-10, 10]
,使用数组进行哈希,可以直接搜索对应位置,大大节省使用 used 数组的时间。
不过利用数组进行哈希需要提前知道数据范围,所以需要观察仔细。
class Solution:
def __init__(self):
self.curr_record = []
self.results = []
def backtrack(self, nums: List[int], used_nums: List[int]):
if len(self.curr_record) == len(nums):
self.results.append(self.curr_record.copy())
return None
for num in nums:
if not used_nums[num + 10]:
self.curr_record.append(num)
used_nums[num + 10] = True
self.backtrack(nums, used_nums)
self.curr_record.pop()
used_nums[num + 10] = False
def permute(self, nums: List[int]) -> List[List[int]]:
self.backtrack(nums, [False] * 21)
return self.results
47. 全排列 II
排列的去重,依然要对数组先排序。同时要注意不同的去重机制:
- 同一父节点下的元素值不能重复使用(注意是值),这个去重的周期是在 for loop 之内,不需要进一步递归+回溯,仅限于当前层的记录。
- 当前 path 内使用过的元素不能再使用,这个去重的周期是在 path 内,所以需要保持递归+回溯(path 是不断递归+回溯)。
层级记录 + path 记录(自己的解法)
- 层级纪录:像491一样对当前的 for loop 记录一个本地变量,如果当前元素值被使用过,则下一次遇到就直接跳过
- path 记录:维持一个额外的参数,记录当前 path 对元素的使用情况,如果遇到值相同的不同元素还是可以使用;该记录需要递归+回溯
class Solution:
def __init__(self):
self.curr_record = []
self.results = []
def backtrack(self, nums: List[int], path_record: List[int]):
if len(self.curr_record) == len(nums):
self.results.append(self.curr_record.copy())
return None
level_record = [False] * 21
for i in range(len(nums)):
if not level_record[nums[i] + 10]:
if not path_record[i]:
level_record[nums[i] + 10] = True
path_record[i] = True
self.curr_record.append(nums[i])
self.backtrack(nums, path_record)
path_record[i] = False
self.curr_record.pop()
def permuteUnique(self, nums: List[int]) -> List[List[int]]:
nums.sort()
self.backtrack(nums, [False] * len(nums))
return self.results
单一 used 数组
和之前的题一样,通过一个额外参数 used 数组来记录当前元素的使用。这是一个不断传递的变量,会一直参与递归+回溯。通过对 used 中相同元素值的元素进行记录,可以推得当前的重复元素是层次内的重复还是 path 上的重复:
nums = [1, 1, 2]
used1 = [1, 1, 0]
used2 = [0, 1, 0]
对于 used1,当我们查询到 idx=1 的元素时,前一个相邻的相同值的元素被使用过了,这意味着当前重复是出现在 path 上的,可以继续使用当前值。(对应的 path 上重复)
对于 used2,当我们查询到 idx=1 的元素时,前一个相邻的相同值的元素没被使用,则k可知,之前的结果回溯到了当前元素的父节点,然后再到达该节点。(对应的层次重复)
这样的判断方式的前提是要对输入进行排序。
class Solution:
def __init__(self):
self.curr_record = []
self.results = []
def backtrack(self, nums: List[int], used: List[int]):
if len(self.curr_record) == len(nums):
self.results.append(self.curr_record.copy())
return None
for i in range(len(nums)):
if i > 0 and nums[i] == nums[i-1] and not used[i-1]:
# the previous duplicate is not used, level-duplicate
continue
if not used[i]: # the current element is available
used[i] = True
self.curr_record.append(nums[i])
self.backtrack(nums, used)
self.curr_record.pop()
used[i] = False
def permuteUnique(self, nums: List[int]) -> List[List[int]]:
nums.sort()
self.backtrack(nums, [False] * len(nums))
return self.results
去重代码的核心就是这部分:
if i > 0 and nums[i] == nums[i-1] and not used[i-1]:
continue
其中 not used[i-1]
代表着出现了树层内的重复,那我们就忽略当前的节点(层次内去重)。对于该元素值的结果遍历出现在第一次遇到该元素值的时候。
但另一种写法也可以:
if i > 0 and nums[i] == nums[i-1] and used[i-1]:
continue
这里检查的是 path 上面的元素重复,即如果当前 path 上使用过了相同值的元素,则忽略当前 path。对于该元素值的结果遍历出现在最后一次遇到该元素值的时候,之前被当作去重了(如下图所示)。这种方法固然可以成立,但是会多很多不必要的检查,效率并不高。