代码随想录算法训练营Day29 | 491. 递增子序列 | 46. 全排列 | 47. 全排列 II

491. 递增子序列

题目链接 | 解题思路

看上去和 90. 组合II 非常相似,同样是同一集合内的子集。但是,本题的递增是由原序列决定的,所以不能对序列排序!题中的例子 [4, 7, 6, 7],如果排序后变成了 [4, 6, 7, 7][4, 6, 7, 7] 也成为了一个递增子序列,但不符合题目要求。

回忆之前的定义,这里需要的是同一层的去重(40. 组合总和II),即同一层上遇到重复的元素值就直接跳过即可(其产生的结果必然是第一次遇到该值的结果的子集);path 的去重仅限元素,可以允许元素值的重复。

  • 相同父节点下,同一层使用过的元素值不能再用(直接跳过)
  • 同一 path 上的值必须(非严格)递增
  • 并非所有结果都在叶子上,收集结果时不要直接 return

以此可以推出回溯的三要素:

  • 参数和返回值:两个经典全局变量;一个额外的参数 start_idx 来记录当前起点,因为组合显然不能重复使用元素。
  • 终止条件:每一条 path 的结束仅有两种可能 1)到达数组结尾; 2)当前 path 不符合要求。实际上可以不特意设置终止条件,在 for loop 中会自动结束。
    • 处理符合条件的 path 时不能返回!
  • 单层搜索:相同父节点下,同一层使用过的元素值不能再用。所以在同一层(for loop)内,保存一个本地变量,记录当前层使用过的元素值。

在这里插入图片描述

这里的 used 数组(层级记录)只记录当前层的使用情况(for loop),它的存在不会跟着递归改变,也就不用回溯。这和之前的 used 数组有巨大的区别,因为之前的 used 记录了 path 上的使用,所以要跟着 path 进行递归+回溯。

优化:在单层搜索中,用来记录当前层使用过的元素值的变量,符合直觉的应该是一个 set,这样可以轻松判断当前元素值是否已经出现过。但 set 用作哈希时,insert 的操作会很耗时,用 list 作为哈希容器会更好,因为本题中限定了数值范围 [-100, 100]

class Solution:
    def __init__(self):
        self.curr_record = []
        self.results = []
    
    def backtrack(self, nums: List[int], start_idx: int):
        if len(self.curr_record) >= 2:
            self.results.append(self.curr_record.copy())
        
        loop_used = [False] * 201
        for i in range(start_idx, len(nums)):
            if len(self.curr_record) > 0 and nums[i] < self.curr_record[-1]:    # the current elemet is making decreasing
                continue
            if loop_used[nums[i] + 100]:          # this element has been used
                continue
            self.curr_record.append(nums[i])
            loop_used[nums[i] + 100] = True
            self.backtrack(nums, i + 1)
            self.curr_record.pop()

    def findSubsequences(self, nums: List[int]) -> List[List[int]]:
        self.backtrack(nums, 0)
        return self.results

本题的重点在于,去重的记录是同一节点下的同一层,是在 for loop 而非 path 上的记录,所以无需回溯,这点一定要分清楚。

46. 全排列

题目链接 | 解题思路

排列和组合/子集最大的区别在于:start_idx 不再通用了!
在排列问题中,已经使用过的元素并不会在 for loop 的下一个 iteration 中禁用,而是仅在当前递归的 path 中禁用(需要根据 path 进行递归+回溯)。这导致我们不再依靠 start_idx 来进行去重,而是完全依靠使用记录

  • 参数和返回值:两个经典全局变量;不再需要 start_idx
  • 终止条件:只有叶子节点才会包含符合条件的排列结果,所以当前收集的 path 长度等于原数组时,意味着可以储存当前结果了。
  • 单层搜索:不再改变 start_idx,而是依靠使用记录 used 数组来决定下一次递归中能使用的元素(递归的变化更隐蔽了,每层都是从头到尾,变化的是使用记录)。
class Solution:
    def __init__(self):
        self.curr_record = []
        self.results = []
    
    def backtrack(self, nums: List[int], used_nums: List[int]):
        if len(used_nums) == len(nums):
            self.results.append(self.curr_record.copy())
            return None
        
        for num in nums:
            if num not in used_nums:
                self.curr_record.append(num)
                used_nums.append(num)
                self.backtrack(nums, used_nums)
                self.curr_record.pop()
                used_nums.pop()

    def permute(self, nums: List[int]) -> List[List[int]]:
        self.backtrack(nums, [])
        return self.results

优化

因为本题设置了输入数据的范围 [-10, 10],使用数组进行哈希,可以直接搜索对应位置,大大节省使用 used 数组的时间。
不过利用数组进行哈希需要提前知道数据范围,所以需要观察仔细。

class Solution:
    def __init__(self):
        self.curr_record = []
        self.results = []
    
    def backtrack(self, nums: List[int], used_nums: List[int]):
        if len(self.curr_record) == len(nums):
            self.results.append(self.curr_record.copy())
            return None
        
        for num in nums:
            if not used_nums[num + 10]:
                self.curr_record.append(num)
                used_nums[num + 10] = True
                self.backtrack(nums, used_nums)
                self.curr_record.pop()
                used_nums[num + 10] = False

    def permute(self, nums: List[int]) -> List[List[int]]:
        self.backtrack(nums, [False] * 21)
        return self.results

47. 全排列 II

题目链接 | 解题思路

排列的去重,依然要对数组先排序。同时要注意不同的去重机制:

  • 同一父节点下的元素值不能重复使用(注意是),这个去重的周期是在 for loop 之内,不需要进一步递归+回溯,仅限于当前层的记录。
  • 当前 path 内使用过的元素不能再使用,这个去重的周期是在 path 内,所以需要保持递归+回溯(path 是不断递归+回溯)。

层级记录 + path 记录(自己的解法)

  • 层级纪录:像491一样对当前的 for loop 记录一个本地变量,如果当前元素被使用过,则下一次遇到就直接跳过
  • path 记录:维持一个额外的参数,记录当前 path 对元素的使用情况,如果遇到值相同的不同元素还是可以使用;该记录需要递归+回溯
class Solution:
    def __init__(self):
        self.curr_record = []
        self.results = []
    
    def backtrack(self, nums: List[int], path_record: List[int]):
        if len(self.curr_record) == len(nums):
            self.results.append(self.curr_record.copy())
            return None
        
        level_record = [False] * 21
        for i in range(len(nums)):
            if not level_record[nums[i] + 10]:
                if not path_record[i]:
                    level_record[nums[i] + 10] = True
                    path_record[i] = True
                    self.curr_record.append(nums[i])
                    self.backtrack(nums, path_record)
                    path_record[i] = False
                    self.curr_record.pop()

    def permuteUnique(self, nums: List[int]) -> List[List[int]]:
        nums.sort()
        self.backtrack(nums, [False] * len(nums))
        return self.results

单一 used 数组

和之前的题一样,通过一个额外参数 used 数组来记录当前元素的使用。这是一个不断传递的变量,会一直参与递归+回溯。通过对 used 中相同元素值的元素进行记录,可以推得当前的重复元素是层次内的重复还是 path 上的重复:

nums = [1, 1, 2]
used1 = [1, 1, 0]
used2 = [0, 1, 0]

对于 used1,当我们查询到 idx=1 的元素时,前一个相邻相同值的元素被使用过了,这意味着当前重复是出现在 path 上的,可以继续使用当前值。(对应的 path 上重复)
对于 used2,当我们查询到 idx=1 的元素时,前一个相邻相同值的元素没被使用,则k可知,之前的结果回溯到了当前元素的父节点,然后再到达该节点。(对应的层次重复)

这样的判断方式的前提是要对输入进行排序。

在这里插入图片描述

class Solution:
    def __init__(self):
        self.curr_record = []
        self.results = []
    
    def backtrack(self, nums: List[int], used: List[int]):
        if len(self.curr_record) == len(nums):
            self.results.append(self.curr_record.copy())
            return None
        
        for i in range(len(nums)):
            if i > 0 and nums[i] == nums[i-1] and not used[i-1]:
            	# the previous duplicate is not used, level-duplicate
                continue
            if not used[i]:				# the current element is available
                used[i] = True
                self.curr_record.append(nums[i])
                self.backtrack(nums, used)
                self.curr_record.pop()
                used[i] = False

    def permuteUnique(self, nums: List[int]) -> List[List[int]]:
        nums.sort()
        self.backtrack(nums, [False] * len(nums))
        return self.results

去重代码的核心就是这部分:

if i > 0 and nums[i] == nums[i-1] and not used[i-1]:
	continue

其中 not used[i-1] 代表着出现了树层内的重复,那我们就忽略当前的节点(层次内去重)。对于该元素值的结果遍历出现在第一次遇到该元素值的时候。

但另一种写法也可以:

if i > 0 and nums[i] == nums[i-1] and used[i-1]:
	continue

这里检查的是 path 上面的元素重复,即如果当前 path 上使用过了相同值的元素,则忽略当前 path。对于该元素值的结果遍历出现在最后一次遇到该元素值的时候,之前被当作去重了(如下图所示)。这种方法固然可以成立,但是会多很多不必要的检查,效率并不高。

在这里插入图片描述

代码随想录算法训练营是一个优质的学习和讨论平台,提供了丰富的算法训练内容和讨论交流机会。在训练营中,学员们可以通过观看视频讲解来学习算法知识,并根据讲解内容进行刷题练习。此外,训练营还提供了刷题建议,例如先看视频、了解自己所使用的编程语言、使用日志等方法来提高刷题效果和语言掌握程度。 训练营中的讨论内容非常丰富,涵盖了各种算法知识点和解题方法。例如,在第14天的训练营中,讲解了二叉树的理论基础、递归遍历、迭代遍历和统一遍历的内容。此外,在讨论中还分享了相关的博客文章和配图,帮助学员更好地理解和掌握二叉树的遍历方法。 训练营还提供了每日的讨论知识点,例如在第15天的讨论中,介绍了层序遍历的方法和使用队列来模拟一层一层遍历的效果。在第16天的讨论中,重点讨论了如何进行调试(debug)的方法,认为掌握调试技巧可以帮助学员更好地解决问题和写出正确的算法代码。 总之,代码随想录算法训练营是一个提供优质学习和讨论环境的平台,可以帮助学员系统地学习算法知识,并提供了丰富的讨论内容和刷题建议来提高算法编程能力。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [代码随想录算法训练营每日精华](https://blog.csdn.net/weixin_38556197/article/details/128462133)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值