深度学习感知器
深度学习概念:
什么是深度学习?深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence)。深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。
感知器:
感知器的组成成分如下:
-
输入权值:一个感知器可以连接多个输入,每一个输入上有一个权值,此外还有一个偏置项,感知器的权值就是上图的ωi
-
激活函数:感知器的激活函数可以有很多选择,例如连续时间的单位阶跃函数f来作为阶跃函数:
f ( z ) = { 1 , z > 0 0 , o t h e r w i s e f(z)=\left\{ \begin{matrix} 1 , z >0 \\ 0 , otherwise \end{matrix} \right. f(z)={1,z>00,otherwise
还有一个常用的激活函数为(ReLU):
f
(
x
)
=
m
a
x
(
0
;
x
)
f(x) = max(0;x)
f(x)=max(0;x)
该函数及其简单,大大提升了机器学习的效率。
- 输出 感知器的输出由下面这个公式来计算:
y = f ( ω ∗ x + b ) y=f(ω*x+b) y=f(ω∗x+b)
感知器的训练:
感知器训练算法:
将权重项和偏置项初始化为0,然后,利用下面的感知器规则迭代地修改ωi和b,知道训练完成。
ω
i
=
ω
i
+
△
ω
i
b
=
b
+
△
b
ωi = ωi + △ωi\\ b = b + △b
ωi=ωi+△ωib=b+△b
其中:
△
ω
i
=
η
(
t
−
y
)
x
i
△
b
=
η
(
t
−
y
)
△ωi = η(t-y)xi\\ △b = η(t-y)
△ωi=η(t−y)xi△b=η(t−y)
ωi是与输出xi对应的权重项,b是偏置值。事实上,可以把看作是值永远为1的输入所对应的权重。是训练样本的实际值,一般称之为label。而是感知器的输出值,它是根据公式(1)计算得出。η是一个称为学习速率的常数,其作用是控制每一步调整权的幅度。
代码范例:
来源:https://www.zybuluo.com/hanbingtao/note/433855
class Perceptron(object):
def __init__(self, input_num, activator):
'''
初始化感知器,设置输入参数的个数,以及激活函数。
激活函数的类型为double -> double
'''
self.activator = activator
# 权重向量初始化为0
self.weights = [0.0 for _ in range(input_num)]
# 偏置项初始化为0
self.bias = 0.0
def __str__(self):
'''
打印学习到的权重、偏置项
'''
return 'weights\t:%s\nbias\t:%f\n' % (self.weights, self.bias)
def predict(self, input_vec):
'''
输入向量,输出感知器的计算结果
'''
# 把input_vec[x1,x2,x3...]和weights[w1,w2,w3,...]打包在一起
# 变成[(x1,w1),(x2,w2),(x3,w3),...]
# 然后利用map函数计算[x1*w1, x2*w2, x3*w3]
# 最后利用reduce求和
return self.activator(
reduce(lambda a, b: a + b,
map(lambda (x, w): x * w,
zip(input_vec, self.weights))
, 0.0) + self.bias)
def train(self, input_vecs, labels, iteration, rate):
'''
输入训练数据:一组向量、与每个向量对应的label;以及训练轮数、学习率
'''
for i in range(iteration):
self._one_iteration(input_vecs, labels, rate)
def _one_iteration(self, input_vecs, labels, rate):
'''
一次迭代,把所有的训练数据过一遍
'''
# 把输入和输出打包在一起,成为样本的列表[(input_vec, label), ...]
# 而每个训练样本是(input_vec, label)
samples = zip(input_vecs, labels)
# 对每个样本,按照感知器规则更新权重
for (input_vec, label) in samples:
# 计算感知器在当前权重下的输出
output = self.predict(input_vec)
# 更新权重
self._update_weights(input_vec, output, label, rate)
def _update_weights(self, input_vec, output, label, rate):
'''
按照感知器规则更新权重
'''
# 把input_vec[x1,x2,x3,...]和weights[w1,w2,w3,...]打包在一起
# 变成[(x1,w1),(x2,w2),(x3,w3),...]
# 然后利用感知器规则更新权重
delta = label - output
self.weights = map(
lambda (x, w): w + rate * delta * x,
zip(input_vec, self.weights))
# 更新bias
self.bias += rate * delta
接下来,我们利用这个感知器类去实现and函数。
def f(x):
'''
定义激活函数f
'''
return 1 if x > 0 else 0
def get_training_dataset():
'''
基于and真值表构建训练数据
'''
# 构建训练数据
# 输入向量列表
input_vecs = [[1,1], [0,0], [1,0], [0,1]]
# 期望的输出列表,注意要与输入一一对应
# [1,1] -> 1, [0,0] -> 0, [1,0] -> 0, [0,1] -> 0
labels = [1, 0, 0, 0]
return input_vecs, labels
def train_and_perceptron():
'''
使用and真值表训练感知器
'''
# 创建感知器,输入参数个数为2(因为and是二元函数),激活函数为f
p = Perceptron(2, f)
# 训练,迭代10轮, 学习速率为0.1
input_vecs, labels = get_training_dataset()
p.train(input_vecs, labels, 10, 0.1)
#返回训练好的感知器
return p
if __name__ == '__main__':
# 训练and感知器
and_perception = train_and_perceptron()
# 打印训练获得的权重
print and_perception
# 测试
print '1 and 1 = %d' % and_perception.predict([1, 1])
print '0 and 0 = %d' % and_perception.predict([0, 0])
print '1 and 0 = %d' % and_perception.predict([1, 0])
print '0 and 1 = %d' % and_perception.predict([0, 1])
该代码要需要在python2上面运行,并不支持python3。
自己尝试写的代码如下:
import numpy as np
# 定义激活函数
def acti_fun(x): #此处选择连续时间的单位阶跃函数作为激活函数
return 1 if x > 0 else 0
# 创建感知器类
class Perception(object):
# 初始化权重
def __init__(self):
self.weights = np.random.random() #定义感知器的权重,初始化感知器
self.bias = 0 #初始化偏置值
# 定义训练函数,包括训练次数iter,学习率rate
def train(self, input_vecs, labels, iter, rate):
for i in range(iter): #此处感知器的训练算法为 :w = w + delta(w) b= b + delta(b) 其中: delta(w) = 学习速率rate* 结果相对于样本的该变量 *对应的数据输入
for input_vec, label in zip(input_vecs, labels):
output = acti_fun(sum(np.array(input_vec) * self.weights) + self.bias) # 此处计算输出 y=f(w*x+b)
bias = label - output
# 更新权重
self.weights += rate * bias * np.array(input_vec)
self.bias += rate * bias
return self.weights, self.bias
# 定义预测函数
def predict(self, input_data):
input_data = np.array(input_data)
pred = []
for each in input_data:
pred_each = acti_fun(sum(np.array(each) * np.array(self.weights)) + self.bias)
pred.append(pred_each)
return pred
# 测试
if __name__ == '__main__':
input_vecs = [[1, 1], [1, 0], [0, 1], [0, 0]]
labels = [1, 1, 1, 0]
inputdata = [[0, 1], [0, 1]] # 可以单个[1,0],也可以多个[[-1,0],[1,1]]
inputdata = np.mat(inputdata)
p = Perception()
p.train(input_vecs, labels, 50, 0.1)
predict = p.predict(inputdata)
print(predict)