在未来的智能交通系统中,自动驾驶技术无疑将扮演重要角色。自动驾驶技术的核心在于感知与决策的融合,这涉及到传感器融合和路径规划两个关键环节。本文将对这两个方面进行深度探讨。
首先,我们来看传感器融合。在自动驾驶中,车辆需要通过各种传感器获取环境信息,包括激光雷达、摄像头、毫米波雷达、超声波传感器等。这些传感器各有优劣,通过融合它们的信息,我们可以得到更全面、准确的环境感知。
激光雷达可以提供高精度的距离信息和物体形状,但在恶劣天气下性能可能会下降。摄像头可以提供丰富的颜色和纹理信息,但对光照条件敏感。毫米波雷达在恶劣天气下表现良好,可以检测物体的距离和速度,但无法提供详细的形状信息。超声波传感器适合近距离的物体检测,但对远距离物体和小物体的检测能力有限。
通过传感器融合,我们可以综合各种传感器的优点,弥补它们的不足,提高环境感知的精度和鲁棒性。传感器融合的方法有很多,常见的有卡尔曼滤波、粒子滤波、神经网络等。这些方法可以根据各种传感器的特性和场景需求,灵活选择和组合。