pandas读取数据,得到Series,DataFrame,以及从这2种数据结构中获取数据的方法

本文介绍了pandas库中Series和DataFrame的创建方法,包括通过数据列表、带标签索引和字典方式创建Series。同时,详细讲解了如何从这两种数据结构中获取数据,如查询特定列得到Series,查询多列得到DataFrame,以及按行定位数据。
摘要由CSDN通过智能技术生成

#1.三种创建series的方法
import pandas as pd
import numpy as np
#1).仅有数据列表
s1=pd.Series([1,“A”,5.2,70])#中括号不能少
print(s1)
print(s1.index)#结果为:RangeIndex(start=0, stop=4, step=1);获取索引
print(s1.values)#结果为:[1 ‘A’ 5.2 70];获取数据

#2).创建具有标签索引
s2=pd.Series([1,“A”,5.2,70],index=[‘a’,‘d’,‘c’,‘b’])
print(s2)

#3).使用python字典创建
data={“A”:1,“D”:‘A’,“B”:5.2,“C”:70}
s3=pd.Series(data)
print(s3)

#2.DataFrame:表格型数据结构。每列可以是不同的值类型(字符串,布尔,数值等);既有行索引index,也有列索引columns;
#可看做由Series组成的字典。
#创建DataFrame的2种方法
#1.依据字典得到
data={‘Country’:[‘China’,‘China’,‘China’,‘USA’,‘USA’,‘Japan’],
‘Policy Key word’:[‘first case’,‘research, source tracing’,‘deregulation, economic incentives’,‘travel warning’,‘testing planned’,‘international travel ban’],
‘Cases’:[1,254,1456,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值