二叉树的顺序存储结构

本文介绍如何在顺序存储结构中建立和操作完全二叉树,包括层序输入、遍历、节点修改、插入子树和删除子树等操作。通过示例展示这些操作的具体过程。
摘要由CSDN通过智能技术生成
// c6-1.h 二叉树的顺序存储结构(见图6.1)
#define MAX_TREE_SIZE 100 // 二叉树的最大结点数
typedef TElemType SqBiTree[MAX_TREE_SIZE]; // 0号单元存储根结点
struct position
{
	int level,order; // 结点的层,本层序号(按满二叉树计算)
};
在顺序存储结构中,如图62 所示,第i 层结点的序号从2i1 -1~2i-2;序号为i 的结
点,其双亲序号为(i+1)/2-1,其左右孩子序号分别为2i+1 和2i+2;除了根结点,序号为
奇数的结点是其双亲的左孩子,它的右兄弟的序号是它的序号+1;序号为偶数的结点是其

双亲的右孩子,它的左兄弟的序号是它的序号-1;i 层的满二叉树,其结点总数为2i-1。


显然,在顺序存储结构中,按层序输入二叉树是最方便的。当最后一个结点的值输入
后,输入给定符号表示结束。二叉树的顺序存储结构适合存完全二叉树或近似完全二
叉树。
bo6-1.cpp 是采用顺序存储结构的基本操作程序,main6-1.cpp 是检验这些基本操作的
主程序。为了使这两个程序在结点类型为整型和字符型时都能使用,采用了编译预处理的
“#define”、“#if”等命令。这样,只要将main6-1.cpp 的第2 行或第3 行改为注释行
即可。

// bo6-1.cpp 二叉树的顺序存储(存储结构由c6-1.h定义)的基本操作(23个)
#define ClearBiTree InitBiTree // 在顺序存储结构中,两函数完全一样
#define DestroyBiTree InitBiTree // 在顺序存储结构中,两函数完全一样
void InitBiTree(SqBiTree T)
{ // 构造空二叉树T。因为T是数组名,故不需要&
	int i;
	for(i=0;i<MAX_TREE_SIZE;i++)
		T[i]=Nil; // 初值为空(Nil在主程中定义)
}
void CreateBiTree(SqBiTree T)
{ // 按层序次序输入二叉树中结点的值(字符型或整型), 构造顺序存储的二叉树T
	int i=0;
	InitBiTree(T); // 构造空二叉树T
#if CHAR // 结点类型为字符
	int l;
	char s[MAX_TREE_SIZE];
	cout<<"请按层序输入结点的值(字符),空格表示空结点,结点数≤"<<MAX_TREE_SIZE<<':'<<endl;
	gets(s); // 输入字符串
	l=strlen(s); // 求字符串的长度
	for(;i<l;i++) // 将字符串赋值给T
		T[i]=s[i];
#else // 结点类型为整型
	cout<<"请按层序输入结点的值(整型),0表示空结点,输999结束。结点数≤"<<MAX_TREE_SIZE<<':'<<endl;
	while(1)
	{
		cin>>T[i];
		if(T[i]==999)
		{
			T[i]=Nil;
			break;
		}
		i++;
	}
#endif
	for(i=1;i<MAX_TREE_SIZE;i++)
		if(i!=0&&T[(i+1)/2-1]==Nil&&T[i]!=Nil) // 此结点(不空)无双亲且不是根
		{
			cout<<"出现无双亲的非根结点"<<T[i]<<endl;
			exit(ERROR);
		}
}
Status BiTreeEmpty(SqBiTree T)
{ // 初始条件:二叉树T存在。操作结果:若T为空二叉树
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值