瞬间移动
题意
三维空间中从 \((0,0,0)\) 开始,每次移动 1,问刚好走 \(N\) 次能到 \((X,Y,Z)\) 的方案数
\(N\le10^7\),答案模 \(998244353\)
Sol
一个感觉很简单的题,结果。。。
不失一般性地,设 \(x,y,z\ge0\)
显然当 \(x+y+z>n\) 或 \((n-x-y-z)\mod2=1\) 时答案为 0
先只考虑前两维,设 \(F_k\) 为从 \((0,0)\) 一共走 \(X+Y+2k\) 步到 \((X,Y)\) 的方案数
解释
首先:
先后顺序可以交换
其次:
从 \(n\) 个里面分别选出 \(m,r\) 个的方案数
等同于
先从 \(n\) 里面选出 \(m+r\) 个,其中再选出 \(m\) 或 \(r\) 个的方案
-
第一个式子可以化成 \(\begin{pmatrix} x+y+2k \\ x+i\quad y+k-i\end{pmatrix}\begin{pmatrix} k \\ i\quad k-i \end{pmatrix}\)
前面那一部分化成 \(\begin{pmatrix} x+y+2k \\ x+y+k \end{pmatrix} \begin{pmatrix} x+y+k \\ y+k-i \end{pmatrix}\)
后面化成 \(\begin{pmatrix} k \\ i \end{pmatrix}\) ,可得第二个式子。
-
第二个式子提出与 \(i\) 无关项得到第三个式子
-
第三个式子的 \(\sum_{i=0}^k \begin{pmatrix} x+y+k \\ y+k-i \end{pmatrix}\begin{pmatrix} k \\ i \end{pmatrix}\)
其实就是从 \(x+y+2k\) 个球中选 \(y+k\) 个,枚举最后 \(k\) 个中选了多少个
即 \(\begin{pmatrix} x+y+2k \\ y+k \end{pmatrix}\)
到三维
直接枚举 \(z\) 走的步数即可,复杂度 \(O(n)\)
Code
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL P = 998244353;
const int N = 1e7 + 5;
inline LL Pow(LL x, LL y) {
register LL res = 1;
for (; y; y >>= 1, x = x * x % P)
if (y & 1) res = res * x % P;
return res;
}
LL fac[N], inv[N], res;
inline LL C(int n, int m) {
if (m > n) return 0;
return fac[n] * inv[m] % P * inv[n - m] % P;
}
int n, X, Y, Z, le, tt;
inline LL count(int k) {
return C(X + Y + 2 * k, X + Y + k) * C(X + Y + 2 * k, Y + k) % P;
}
int main() {
// freopen("teleport.in", "r", stdin);
// freopen("teleport.out", "w", stdout);
scanf("%d%d%d%d", &n, &X, &Y, &Z);
X = abs(X), Y = abs(Y), Z = abs(Z), le = X + Y + Z, fac[0] = 1;
if (n < le) return puts("0"), 0;
if ((n - le) & 1) return puts("0"), 0;
for (int i = 1; i <= n; i++) fac[i] = fac[i - 1] * i % P;
inv[n] = Pow(fac[n], P - 2);
for (int i = n - 1; ~i; i--) inv[i] = inv[i + 1] * (i + 1) % P;
tt = (n - le) / 2;
for (int z = 0; z <= tt; z++)
(res += C(n, z) * C(n - z, Z + z) % P * count(tt - z) % P) %= P;
printf("%lld", res);
}
总结
这个式子就是经典的范德蒙德卷积。
高级的名字,本质是组合数的变换
以后遇到这种题要记得各种性质,大胆去推