BZOJ1790:[Ahoi2008]Rectangle 矩形藏宝地 (CDQ分治+线段树)

题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1790


题目分析:这题我一开始想了很久,想到平面扫描啊乱七八糟的东西,后来发现其实我们根本不用当每一个藏宝地是一个矩形。如果一个藏宝地i的左下角坐标为(A,B),右上角坐标为(C,D),那么我们就是要查看有没有一个藏宝地的A值小于i的A值,而且其B值小于i的B值,其C,D值分别大于i的C,D值。这就是一个四位偏序嘛,而且我们只要判断有没有就可以了,所以是一个CDQ。于是我们先离散化,将藏宝地按A值排序,做CDQ分治;然后分治的时候按B值排序,作为时间戳插进以C的权值线段树里,并维护D的最大值即可。时间复杂度 O(nlog2(n))


CODE:

#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<stdio.h>
#include<algorithm>
using namespace std;

const int maxn=200100;

struct data
{
    int num;
    bool Left;
} a[maxn];

int tree[maxn<<2];

int A[maxn];
int B[maxn];
int C[maxn];
int D[maxn];

int id[maxn];
bool vis[maxn];

int *R;
int n;

bool Comp1(int x,int y)
{
    return R[x]<R[y];
}

void Work()
{
    for (int i=1; i<=n; i++) id[i]=i;
    sort(id+1,id+n+1,Comp1);
    for (int i=1; i<=n; i++) R[ id[i] ]=i;
}

bool Comp2(data x,data y)
{
    return R[x.num]<R[y.num];
}

void Update(int root,int l,int r,int x,int v)
{
    if ( x<l || r<x ) return;
    if ( l==x && x==r )
    {
        tree[root]=v;
        return;
    }

    int mid=(l+r)>>1;
    int Left=root<<1;
    int Right=Left|1;

    Update(Left,l,mid,x,v);
    Update(Right,mid+1,r,x,v);
    tree[root]=max(tree[Left],tree[Right]);
}

int Query(int root,int l,int r,int x,int y)
{
    if ( y<l || r<x ) return 0;
    if ( x<=l && r<=y ) return tree[root];

    int mid=(l+r)>>1;
    int Left=root<<1;
    int Right=Left|1;

    int vl=Query(Left,l,mid,x,y);
    int vr=Query(Right,mid+1,r,x,y);
    return max(vl,vr);
}

void CDQ(int l,int r)
{
    if (l==r) return;
    int mid=(l+r)>>1;
    for (int i=l; i<=mid; i++) a[i].Left=true;
    R=B;
    sort(a+l,a+r+1,Comp2);
    for (int i=l; i<=r; i++)
        if (a[i].Left) Update(1,1,n,C[ a[i].num ],D[ a[i].num ]);
        else
            if ( Query(1,1,n,C[ a[i].num ]+1,n)>D[ a[i].num ] )
                vis[ a[i].num ]=true;
    for (int i=l; i<=r; i++)
        if (a[i].Left) Update(1,1,n,C[ a[i].num ],0);
    R=A;
    sort(a+l,a+r+1,Comp2);
    for (int i=l; i<=mid; i++) a[i].Left=false;
    CDQ(l,mid);
    CDQ(mid+1,r);
}

int main()
{
    freopen("1790.in","r",stdin);
    freopen("1790.out","w",stdout);

    scanf("%d",&n);
    for (int i=1; i<=n; i++) scanf("%d%d%d%d",&A[i],&B[i],&C[i],&D[i]);

    R=B,Work();
    R=C,Work();
    R=D,Work();
    R=A,Work();

    for (int i=1; i<=n; i++) a[i].num=id[i];
    CDQ(1,n);

    int ans=0;
    for (int i=1; i<=n; i++) if (vis[i]) ans++;
    printf("%d\n",ans);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值