题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1790
题目分析:这题我一开始想了很久,想到平面扫描啊乱七八糟的东西,后来发现其实我们根本不用当每一个藏宝地是一个矩形。如果一个藏宝地i的左下角坐标为(A,B),右上角坐标为(C,D),那么我们就是要查看有没有一个藏宝地的A值小于i的A值,而且其B值小于i的B值,其C,D值分别大于i的C,D值。这就是一个四位偏序嘛,而且我们只要判断有没有就可以了,所以是一个CDQ。于是我们先离散化,将藏宝地按A值排序,做CDQ分治;然后分治的时候按B值排序,作为时间戳插进以C的权值线段树里,并维护D的最大值即可。时间复杂度 O(nlog2(n)) 。
CODE:
#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<stdio.h>
#include<algorithm>
using namespace std;
const int maxn=200100;
struct data
{
int num;
bool Left;
} a[maxn];
int tree[maxn<<2];
int A[maxn];
int B[maxn];
int C[maxn];
int D[maxn];
int id[maxn];
bool vis[maxn];
int *R;
int n;
bool Comp1(int x,int y)
{
return R[x]<R[y];
}
void Work()
{
for (int i=1; i<=n; i++) id[i]=i;
sort(id+1,id+n+1,Comp1);
for (int i=1; i<=n; i++) R[ id[i] ]=i;
}
bool Comp2(data x,data y)
{
return R[x.num]<R[y.num];
}
void Update(int root,int l,int r,int x,int v)
{
if ( x<l || r<x ) return;
if ( l==x && x==r )
{
tree[root]=v;
return;
}
int mid=(l+r)>>1;
int Left=root<<1;
int Right=Left|1;
Update(Left,l,mid,x,v);
Update(Right,mid+1,r,x,v);
tree[root]=max(tree[Left],tree[Right]);
}
int Query(int root,int l,int r,int x,int y)
{
if ( y<l || r<x ) return 0;
if ( x<=l && r<=y ) return tree[root];
int mid=(l+r)>>1;
int Left=root<<1;
int Right=Left|1;
int vl=Query(Left,l,mid,x,y);
int vr=Query(Right,mid+1,r,x,y);
return max(vl,vr);
}
void CDQ(int l,int r)
{
if (l==r) return;
int mid=(l+r)>>1;
for (int i=l; i<=mid; i++) a[i].Left=true;
R=B;
sort(a+l,a+r+1,Comp2);
for (int i=l; i<=r; i++)
if (a[i].Left) Update(1,1,n,C[ a[i].num ],D[ a[i].num ]);
else
if ( Query(1,1,n,C[ a[i].num ]+1,n)>D[ a[i].num ] )
vis[ a[i].num ]=true;
for (int i=l; i<=r; i++)
if (a[i].Left) Update(1,1,n,C[ a[i].num ],0);
R=A;
sort(a+l,a+r+1,Comp2);
for (int i=l; i<=mid; i++) a[i].Left=false;
CDQ(l,mid);
CDQ(mid+1,r);
}
int main()
{
freopen("1790.in","r",stdin);
freopen("1790.out","w",stdout);
scanf("%d",&n);
for (int i=1; i<=n; i++) scanf("%d%d%d%d",&A[i],&B[i],&C[i],&D[i]);
R=B,Work();
R=C,Work();
R=D,Work();
R=A,Work();
for (int i=1; i<=n; i++) a[i].num=id[i];
CDQ(1,n);
int ans=0;
for (int i=1; i<=n; i++) if (vis[i]) ans++;
printf("%d\n",ans);
return 0;
}