BZOJ3672:[Noi2014]购票 (斜率优化DP+二分+(树上CDQ分治/树链剖分))

9 篇文章 0 订阅
9 篇文章 0 订阅

题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3672


题目分析:这题和NOI2007货币兑换Cash差不多,只不过它斜率优化的式子要简单些,并把原先的序列变成了树,还加上了距离限制。
我们先考虑一种比较暴力的做法:能更新某个点答案的那些点一定在它父亲到它祖先某个点u的连续一段上,于是不妨用倍增找出这个u,然后做一次树剖。在DFS序的线段树上用一个数组存它对应区间的点所构成的凸包,查找时二分即可。这题不需要套平衡树,因为并没有要求强制在线。时间复杂度 O(nlog3(n)) ,按道理来说应该过不了的,但因为树剖和二分的常数很小所以11000ms就过了。这里还有一个小优化:如果在线段树某个点代表的区间[L,R]里,L~R号点不来自同一条重链,就不用维护这些点构成的凸包,因为查询的时候肯定不会查到线段树的[L,R]这个节点。


CODE(树剖):

#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<stdio.h>
#include<algorithm>
using namespace std;

const int maxn=200100;
const int maxl=20;
const long long oo=1e18;
const double eps=1e-8;
typedef long long LL;

struct edge
{
    int obj;
    LL len;
    edge *Next;
} e[maxn];
edge *head[maxn];
int cur=-1;

int id[maxn<<2];
int Le[maxn<<2];
int Ri[maxn<<2];
int que[maxn*maxl];
int tail=0;

int fa[maxn][maxl];
int dep[maxn];
LL dis[maxn];
int Size[maxn];
int Son[maxn];

int Top[maxn];
int bot[maxn];
int dfsx[maxn];
int Time=0;

LL p[maxn];
LL q[maxn];
LL l[maxn];
LL f[maxn];

int n,t;

void Add(int x,int y,LL z)
{
    cur++;
    e[cur].obj=y;
    e[cur].len=z;
    e[cur].Next=head[x];
    head[x]=e+cur;
}

void Dfs1(int node)
{
    Size[node]=1;
    for (edge *p=head[node]; p; p=p->Next)
    {
        int son=p->obj;
        fa[son][0]=node;
        dep[son]=dep[node]+1;
        dis[son]=dis[node]+p->len;
        Dfs1(son);
        Size[node]+=Size[son];
        if (Size[son]>Size[ Son[node] ]) Son[node]=son;
    }
}

void Dfs2(int node)
{
    dfsx[++Time]=node;
    bot[node]=Time;
    int son=Son[node];
    if (son)
    {
        Top[son]=Top[node];
        Dfs2(son);
    }
    for (edge *p=head[node]; p; p=p->Next)
    {
        son=p->obj;
        if (son!=Son[node])
        {
            Top[son]=son;
            Dfs2(son);
        }
    }
}

int Jump(int x,LL y)
{
    for (int j=maxl-1; j>=0; j--)
    {
        int z=fa[x][j];
        LL w=dis[x]-dis[z];
        if (y>=w) x=z,y-=w;
    }
    return x;
}

LL Binary(int L,int R,LL x)
{
    while (L+1<R)
    {
        int mid=(L+R)>>1;
        int k=que[mid-1];
        int j=que[mid];
        if (f[j]-f[k]<x*(dis[j]-dis[k])) L=mid;
        else R=mid;
    }
    int k=que[L],j=que[R];
    return min(f[j]-dis[j]*x,f[k]-dis[k]*x);
}

LL Query(int root,int L,int R,int x,int y,LL k)
{
    if ( y<L || R<x ) return oo;
    if ( x<=L && R<=y ) return Binary(Le[root],Ri[root],k);

    int mid=(L+R)>>1;
    int Left=root<<1;
    int Right=Left|1;

    LL vl=Query(Left,L,mid,x,y,k);
    LL vr=Query(Right,mid+1,R,x,y,k);
    return min(vl,vr);
}

LL Work(int u,int v,LL x)
{
    if (Top[u]==Top[v])
    {
        if (bot[u]>bot[v]) swap(u,v);
        return Query(1,1,n,bot[u],bot[v],x);
    }
    if (dep[ Top[u] ]<dep[ Top[v] ]) swap(u,v);
    int w=Top[u];
    LL val=Query(1,1,n,bot[w],bot[u],x);
    u=fa[w][0];
    return min(val, Work(u,v,x) );
}

void Build(int root,int L,int R)
{
    if (L==R)
    {
        int x=dfsx[L];
        id[root]=Top[x];
        Le[root]=++tail;
        que[tail]=x;
        Ri[root]=tail;
        if (L==1) return;

        int y=Jump(x,l[x]);
        f[x]=Work(fa[x][0],y,p[x])+dis[x]*p[x]+q[x];
        return;
    }

    int mid=(L+R)>>1;
    int Left=root<<1;
    int Right=Left|1;

    Build(Left,L,mid);
    Build(Right,mid+1,R);
    if ( id[Left] && id[Left]==id[Right] ) id[root]=id[Left];
    else return;

    Le[root]=tail+1;
    for (int i=L; i<=R; i++)
    {
        int x=dfsx[i];
        que[++tail]=x;
        while ( Le[root]+2<=tail )
        {
            int y=que[tail-1],z=que[tail-2];
            double vl=(double)(f[x]-f[y])/(double)(dis[x]-dis[y]);
            double vr=(double)(f[y]-f[z])/(double)(dis[y]-dis[z]);
            if (vl-vr>eps) break;
            que[--tail]=x;
        }
    }
    Ri[root]=tail;
}

int main()
{
    freopen("3672.in","r",stdin);
    freopen("3672.out","w",stdout);

    scanf("%d%d",&n,&t);
    for (int i=1; i<=n; i++) head[i]=NULL;
    for (int i=2; i<=n; i++)
    {
        int f;
        LL s;
        scanf("%d%lld%lld%lld%lld",&f,&s,&p[i],&q[i],&l[i]);
        Add(f,i,s);
    }

    fa[1][0]=1;
    Dfs1(1);
    Top[1]=1;
    Dfs2(1);

    for (int j=1; j<maxl; j++)
        for (int i=1; i<=n; i++)
            fa[i][j]=fa[ fa[i][j-1] ][j-1];

    Build(1,1,n);

    for (int i=2; i<=n; i++) printf("%lld\n",f[i]);
    return 0;
}

还有一种用树上CDQ分治的更加巧妙的 O(nlog2(n)) 的做法。关于树上CDQ分治SemiWaker的这篇题解写得很简明,在此我引用其中的一段话:

树上CDQ分治:
这里的限制条件是:每个点仅受祖先影响,或者每个点仅受该点所在子树的影响。(两个条件全局仅成立一个)
先讨论每个点仅受祖先影响的情况。
考虑以某个点 x 为分界线,将树分为两半。(虽然有多个联通块)
将根 R 所在的块包括 x 分治处理。
处理 R 所在的块中的修改操作,对树的其余部分的影响。
注意,只有从 x 到 R 的路径上的点才会对树的其余部分有影响,因为只有这一些点在树的其余部分到根的路径上。
将树的其余部分分治处理。(每个联通块单独处理)
分治后的根为与 x 相连的点。(即分治的部分中深度最小的点)
如果是每个点仅受所在子树的影响的话,将分治的顺序调换即可。
考虑怎样选取分界点 x ,显然选择重心最优。
换句话说,树上的CDQ分治,就是以点分治的方式来进行CDQ分治。

那么在这题中,我们记dis[node]表示node到根的距离。每次选取重心root,先递归root父亲所在的连通块,算出连通块中每一个点的最优答案,然后再扫一遍其他连通块的所有点。假设node在其他连通块中,设 x=dis[root]+l[node]dis[node](x>=0) ,那么root的祖先(包括它自己)中所有到root距离小于等于x的点就可以更新node。我们将root的祖先按到root的距离排序,将所有其它连通块的点按其x值排序,就是一个很普通的单调队列了。
(话说我的点分治还是写得很不熟啊,而且 nlog2(n) 的点分治跑得比 nlog3(n) 的树剖还慢是什么情况?)


CODE(点分治):

#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<stdio.h>
#include<algorithm>
using namespace std;

const int maxn=200100;
const double eps=1e-8;
const long long oo=1e18;
typedef long long LL;

struct edge
{
    int obj;
    LL len;
    edge *Next;
} e[maxn<<1];
edge *head[maxn];
int cur=-1;

struct data
{
    LL val;
    int Node,P;
} kscla[maxn];
int num;

int fa[maxn];
LL dis[maxn];

bool vis[maxn];
int Size[maxn];
int max_son[maxn];

LL f[maxn];
LL r[maxn];
LL q[maxn];
LL l[maxn];

int sak[maxn];
int tail;
int n,t;

void Add(int x,int y,LL z)
{
    cur++;
    e[cur].obj=y;
    e[cur].len=z;
    e[cur].Next=head[x];
    head[x]=e+cur;
}

void Dfs1(int node)
{
    for (edge *p=head[node]; p; p=p->Next)
    {
        int son=p->obj;
        if (son!=fa[node])
        {
            fa[son]=node;
            dis[son]=dis[node]+p->len;
            Dfs1(son);
        }
    }
}

void Dfs2(int node,int from)
{
    sak[++tail]=node;
    max_son[node]=0;
    Size[node]=1;
    for (edge *p=head[node]; p; p=p->Next)
    {
        int to=p->obj;
        if ( to!=from && vis[to] )
        {
            Dfs2(to,node);
            Size[node]+=Size[to];
            if (Size[to]>Size[ max_son[node] ]) max_son[node]=to;
        }
    }
}

int Get(int node)
{
    return max(Size[ max_son[node] ],tail-Size[node]);
}

void Dfs3(int node,LL x)
{
    if (x+l[node]>=dis[node])
    {
        num++;
        kscla[num].val=x+l[node]-dis[node];
        kscla[num].Node=node;
        kscla[num].P=1;
    }
    for (edge *p=head[node]; p; p=p->Next)
    {
        int son=p->obj;
        if ( son!=fa[node] && vis[son] ) Dfs3(son,x);
    }
}

bool Comp(data x,data y)
{
    return ( x.val<y.val || ( x.val==y.val && x.P<y.P ) );
}

LL Binary(LL x)
{
    int L=1,R=tail;
    while (L+1<R)
    {
        int mid=(L+R)>>1;
        int y=sak[mid],z=sak[mid+1];
        if (f[y]-dis[y]*x<f[z]-dis[z]*x) R=mid;
        else L=mid;
    }
    int y=sak[L],z=sak[R];
    return min(f[y]-dis[y]*x,f[z]-dis[z]*x);
}

void Solve(int node)
{
    tail=0;
    Dfs2(node,0);
    if (tail==1)
    {
        vis[node]=false;
        return;
    }

    int root=node;
    for (int i=2; i<=tail; i++)
        if ( Get(sak[i])<Get(root) ) root=sak[i];

    node=fa[root];
    while (vis[node]) node=fa[node];
    vis[root]=false;
    if (vis[ fa[root] ]) Solve(fa[root]);

    int temp=fa[root];
    while ( temp!=node && dis[root]-dis[temp]<=l[root] )
        f[root]=min(f[root],f[temp]+(dis[root]-dis[temp])*r[root]+q[root]),
        temp=fa[temp];

    temp=root,num=0;
    while (temp!=node)
    {
        num++;
        kscla[num].val=dis[root]-dis[temp];
        kscla[num].Node=temp;
        kscla[num].P=0;
        temp=fa[temp];
    }
    for (edge *p=head[root]; p; p=p->Next)
    {
        int son=p->obj;
        if ( son!=fa[root] && vis[son] ) Dfs3(son,dis[root]);
    }

    sort(kscla+1,kscla+num+1,Comp);
    tail=0;
    for (int i=1; i<=num; i++)
        if (kscla[i].P)
        {
            int x=kscla[i].Node;
            LL v=Binary(r[x]);
            f[x]=min(f[x],v+dis[x]*r[x]+q[x]);
        }
        else
        {
            int x=kscla[i].Node;
            sak[++tail]=x;
            while (tail>2)
            {
                int y=sak[tail-1],z=sak[tail-2];
                double Left=(double)(f[y]-f[x])/(double)(dis[y]-dis[x]);
                double Right=(double)(f[z]-f[y])/(double)(dis[z]-dis[y]);
                if (Left-Right<-eps) break;
                sak[--tail]=x;
            }
        }

    for (edge *p=head[root]; p; p=p->Next)
    {
        int son=p->obj;
        if ( son!=fa[root] && vis[son] ) Solve(son);
    }
}

int main()
{
    freopen("ticket.in","r",stdin);
    freopen("ticket.out","w",stdout);

    scanf("%d%d",&n,&t);
    for (int i=1; i<=n; i++) head[i]=NULL,vis[i]=true;
    for (int i=2; i<=n; i++)
    {
        int F;
        LL s;
        scanf("%d%lld%lld%lld%lld",&F,&s,&r[i],&q[i],&l[i]);
        Add(i,F,s);
        Add(F,i,s);
    }

    Dfs1(1);
    for (int i=2; i<=n; i++) f[i]=oo;
    Solve(1);

    for (int i=2; i<=n; i++) printf("%lld\n",f[i]);
    return 0;
}
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值