题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4710
题目分析:一开始看完全没有头绪,后来发现这不就是个和第二类stirling数很像的容斥吗?
首先考虑没有“每个人至少要拿一个特产”这个条件怎么做。由于不同的特产之间是独立的,可以记h[i][j]表示前i个人拿了j件特产的方案数。转移方程为 h[i][j]=∑jk=0h[i−1][k] h [ i ] [ j ] = ∑ k = 0 j h [ i − 1 ] [ k ] ,用前缀和优化即可。不同的特产,方案数可以累乘。
但这样算出来的方案中会有人拿不到特产。不妨记f(i)表示 刚好 有i个人拿到特产的方案数,g(i)表示 至多 有i个人拿到特产的方案数。很明显有:
要乘上组合数的原因是每个人的编号都不同。容斥可得:
g(i)可以通过h数组求得,而答案就是f(n)。时间复杂度 O(nm) O ( n m ) 。
CODE:
#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<stdio.h>
#include<algorithm>
using namespace std;
const int maxn=1010;
const long long M=1000000007;
typedef long long LL;
LL f[maxn][maxn];
LL sum[maxn][maxn];
LL fac[maxn];
LL nfac[maxn];
int num[maxn];
int n,m;
LL ans=0;
LL C(int N,int mm)
{
LL val=fac[N];
val=val*nfac[mm]%M;
val=val*nfac[N-mm]%M;
return val;
}
int main()
{
freopen("4710.in","r",stdin);
freopen("4710.out","w",stdout);
scanf("%d%d",&n,&m);
int Mn=0;
for (int i=1; i<=m; i++) scanf("%d",&num[i]),Mn=max(Mn,num[i]);
f[0][0]=1;
for (int j=0; j<=Mn; j++) sum[0][j]=1;
for (int i=1; i<=n; i++)
{
for (int j=0; j<=Mn; j++) f[i][j]=sum[i-1][j];
sum[i][0]=f[i][0];
for (int j=1; j<=Mn; j++) sum[i][j]=(sum[i][j-1]+f[i][j])%M;
}
fac[0]=1;
for (LL i=1; i<=n; i++) fac[i]=fac[i-1]*i%M;
nfac[0]=nfac[1]=1;
for (LL i=2; i<=n; i++)
{
LL x=M/i,y=M%i;
nfac[i]=M-x*nfac[y]%M;
}
for (int i=2; i<=n; i++) nfac[i]=nfac[i-1]*nfac[i]%M;
for (int i=1; i<=n; i++)
{
LL temp=1;
for (int j=1; j<=m; j++) temp=temp*f[i][ num[j] ]%M;
temp=temp*C(n,i)%M;
if ((n-i)&1) temp=(M-temp)%M;
ans=(ans+temp)%M;
}
printf("%lld\n",ans);
return 0;
}