BZOJ4710:[Jsoi2011]分特产 (容斥原理+组合数学+DP)

题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4710


题目分析:一开始看完全没有头绪,后来发现这不就是个和第二类stirling数很像的容斥吗?

首先考虑没有“每个人至少要拿一个特产”这个条件怎么做。由于不同的特产之间是独立的,可以记h[i][j]表示前i个人拿了j件特产的方案数。转移方程为h[i][j]=k=0jh[i1][k],用前缀和优化即可。不同的特产,方案数可以累乘。

但这样算出来的方案中会有人拿不到特产。不妨记f(i)表示 刚好 有i个人拿到特产的方案数,g(i)表示 至多 有i个人拿到特产的方案数。很明显有:

g(i)=j=1iCijf(j)

要乘上组合数的原因是每个人的编号都不同。容斥可得:

f(i)=j=1i(1)ijCijg(j)

g(i)可以通过h数组求得,而答案就是f(n)。时间复杂度O(nm)


CODE:

#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<stdio.h>
#include<algorithm>
using namespace std;

const int maxn=1010;
const long long M=1000000007;
typedef long long LL;

LL f[maxn][maxn];
LL sum[maxn][maxn];

LL fac[maxn];
LL nfac[maxn];

int num[maxn];
int n,m;
LL ans=0;

LL C(int N,int mm)
{
    LL val=fac[N];
    val=val*nfac[mm]%M;
    val=val*nfac[N-mm]%M;
    return val;
}

int main()
{
    freopen("4710.in","r",stdin);
    freopen("4710.out","w",stdout);

    scanf("%d%d",&n,&m);
    int Mn=0;
    for (int i=1; i<=m; i++) scanf("%d",&num[i]),Mn=max(Mn,num[i]);

    f[0][0]=1;
    for (int j=0; j<=Mn; j++) sum[0][j]=1;
    for (int i=1; i<=n; i++)
    {
        for (int j=0; j<=Mn; j++) f[i][j]=sum[i-1][j];
        sum[i][0]=f[i][0];
        for (int j=1; j<=Mn; j++) sum[i][j]=(sum[i][j-1]+f[i][j])%M;
    }

    fac[0]=1;
    for (LL i=1; i<=n; i++) fac[i]=fac[i-1]*i%M;
    nfac[0]=nfac[1]=1;
    for (LL i=2; i<=n; i++)
    {
        LL x=M/i,y=M%i;
        nfac[i]=M-x*nfac[y]%M;
    }
    for (int i=2; i<=n; i++) nfac[i]=nfac[i-1]*nfac[i]%M;

    for (int i=1; i<=n; i++)
    {
        LL temp=1;
        for (int j=1; j<=m; j++) temp=temp*f[i][ num[j] ]%M;
        temp=temp*C(n,i)%M;
        if ((n-i)&1) temp=(M-temp)%M;
        ans=(ans+temp)%M;
    }
    printf("%lld\n",ans);

    return 0;
}
发布了160 篇原创文章 · 获赞 76 · 访问量 10万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览