Dreamhale学习《李宏毅的机器学习》笔记总结
p1
一、摘要
1.什么是人工智能?
人工智能是机器可以跟人一样的聪明,人工智能
2.机器学习跟人工智慧之间什么关系?
人工智慧是我们想要达成的目标,而机器学习是想要达成目标的手段。深度学习就是机器学习的其中一种方法。
3.人工智能的例子
河狸的坝:if(河里听到水流声)Then它就筑水坝直到它听不到流水声。
4.cat-bot与ai区别
二、实现结构
- define a set of function
(1)function的作用;
我们要找一个function来实现识别,但是人类的力量不好实现,我们凭借的机器的力量,帮我们把这个function找出来
(2)Functiond的结构
包括3部分首先是Function set(集合),这个function里面有成千上万的function其次是它有一些训练的资料,这些训练资料告诉机器说一个好的function,它的输入输出应该长什么样子,有什么样关系。机器可以根据训练资料判断一个function是好的,还是不好的。你告诉机器input和output这一过程就叫做supervised learning 。
(注释:如果一个训练集很好我们称为f∗)
- 具体步骤
左边这个部分叫training,就是学习的过程;右边这个部分叫做testing,learning framework整个过程分成了三个步骤。第一个步骤就是找一个function,第二个步骤让machine可以衡量一个function是好还是不好,第三个步骤是让machine有一个自动的方法,有一个好演算法可以挑出最好的function。
三、机器学习相关技术
- 监督学习
- Regression是一种machine learning的task,我们要做regression时的意思是,machine找到的function,它的输出是一个scalar,这个叫做regression;
- Classification(分类)的问题:Regression和Classification的差别就是我们要机器输出的东西的类型是不一样。在Regression中机器输出的是一个数值,在Classification里面机器输出的是类别比如是否和分类的关系。
- 选择model
- 选不同的function set就是选不同的model,model分为线性和非线性。我们主要在非线性性(Deep model)。Deep model可以处理playgo等复杂问题。
- 如何训练:选择训练资料告诉机器现在这个function输入输出分别应该是什么。就看到某样的盘式,我们应该输出什么样结果。
{注: 监督学习的问题是我们需要大量的training data, 我们需要告诉机器function的input和output是什么。这个output往往没有办法用很自然的方式取得,需要人工的力量把它标注出来,这些function的output叫做label。}*
- 半监督学习
在半监督学习的技术中,这些没有label的data,他可能也是对学习有帮助。
- 迁移学习
迁移学习的意思是:假设我们要做猫和狗的分类问题,我们也一样,只有少量的有label的data。但是我们现在有大量的data,这些大量的data中可能有label也可能没有label。你有这一大堆不相干的图片,它到底可以带来什么帮助。这个就是迁移学习要讲的问题。
- 无监督学习
如果在完全没有任何label的情况下,到底机器可以学到什么样的事情。举例来说,如果我们给机器看大量的文章(在去网络上收集站文章很容易,网络上随便爬就可以)让机器看过大量的文章以后,它到底可以学到什么事情
三、扩展
1. structured learning
structured learning 中让机器输出的是要有结构性的,举例来说:在语音辨识里面,机器输入是声音讯号,输出是一个句子。句子是要很多词汇拼凑完成。它是一个有结构性的object。
2.reinforcement learning
data mining将reinforcement learning技术用来玩一些小游戏。另外一个就是Alpha Go。
- 强化学习
reinforcement learning是什么呢?在reinforcement learning里面,我们没有告诉机器正确的答案是什么,机器所拥有的只有一个分数,就是他做的好还是不好。 reinforcement learning也是比较符合我们人类真正的学习的情景。
同样的颜色不同的方块是同一个类型的,这边的蓝色的方块,指的是学习的情景,通常学习的情景是你没有办法控制的。reinforcement learning就是我们没有办法做监督学习的时候,我们才做reinforcement learning。红色的是指你的task,你要解的问题,你要解的这个问题随着你用的方程的不同,有regression、有classification、有structured。所以在不同的情境下,都有可能要解这个task。最后,在这些不同task里面有不同的model,用绿色的方块表示。