原理
栈(stack)又称堆栈,它是一种运算受限的线性表。限定仅在表尾进行插入和删除操作。这一端被称为栈顶,相对地,把另一端称为栈底。向一个栈插入新元素又称进栈、入栈或者是压栈,它是把新元素放到栈顶元素的上面,使之称为新的栈顶元素;从一个栈删除一个元素又称出栈或者是退栈,它是把栈顶元素删除掉,使其相邻的元素称为新的栈顶元素。当栈中没有任何元素时称为空栈。
由于栈这种数据结构只允许在一端进行操作,又按照后进先出(LIFO, Last In First Out)的原理运作。因此栈又称后进先出(LIFO, Last In First Out)或先进后出(FILO, First In Last Out)的线性表。
实现
入栈操作
伪代码如下:
- 如果当前栈的大小小于栈的极限容量,则将元素压进栈中。
具体实现代码如下:
def push(self, data):
if len(self.stack) >= self.limit:
raise IndexError('超出栈容量极限')
self.stack.append(data)
出栈操作
伪代码如下:
- 如果栈非空,则取出栈顶元素并返回。
具体实现代码如下:
def pop(self):
if self.stack:
return self.stack.pop()
else:
raise IndexError('从空栈中弹出')
完整代码如下:
class Stack(object):
def __init__(self, limit=10):
self.stack = []
self.limit = limit
def push(self, data):
if len(self.stack) >= self.limit:
raise IndexError('超出栈容量极限')
self.stack.append(data)
def pop(self):
if self.stack:
return self.stack.pop()
else:
raise IndexError('从空栈中弹出')
# 获取栈顶元素
def peek(self):
if self.stack:
return self.stack[-1]
# 判断栈是否为空
def is_empty(self):
return not bool(self.stack)
# 获取当前栈的大小
def size(self):
return len(self.stack)
应用
括号匹配
伪代码如下:
- 如果当前字符是左括号,则把它压入栈中
- 如果当前字符是右括号,如果此时栈为空,则表示括号不匹配,否则从栈中弹出一个左括号。
- 当全部字符都读取完,此时如果栈不为空,则左右括号不匹配;如果栈为空,则左右括号匹配。
具体代码实现如下:
def balanced_parentheses(parentheses):
stack = Stack(len(parentheses))
for parenthesis in parentheses:
if parenthesis == '(':
stack.push(parenthesis)
elif parenthesis == ')':
if stack.is_empty():
return False
stack.pop()
else:
raise RuntimeError('非法字符')
return stack.is_empty()
逆波兰表达式
伪代码如下:
- 如果当前字符是数字,则把数字压入栈中。
- 如果当前字符是运算符,则从栈中弹出两个元素,根据运算符做相应运算后,将结果压入栈中。
- 当所有字符处理完毕后,堆栈上包含的数值就是表达式的运算结果。
具体实现代码如下:
def reversePolishExpr(expr = '12,4,*,1,2,+,+'):
Stack = []
Div = lambda x, y: int(x/y)
Opr = {'^':operator.pow, '*':operator.mul, '/':Div, '+':operator.add, '-':operator.sub}
exprs = expr.split(',')
for x in exprs:
if x in r'+*/^-':
if len(Stack) < 2:
raise RuntimeError('栈中的元素个数必须大于或等于两个')
B = Stack.pop()
A = Stack.pop()
Stack.append(str(Opr[x](int(A), int(B))))
else:
Stack.append(x)
return int(Stack[0])
数制转换
伪代码如下:
- 如果N不等于零,则将N % 2压入栈中,N等于N / 2。
具体实现代码如下:
def conversion(N, K = 2):
digits = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ'
Stack = []
while N > 0:
Stack.append(N % K)
N //= K
res = ''
while bool(Stack):
res = res + digits[Stack.pop()]
return res