关于map的一些用法总结

本文总结了Python中map函数的几种常见用法,包括如何利用map进行数据转换、处理,以及在分组和聚合操作中的应用。通过实例解析,帮助读者深入理解map在实际编程中的功能和优势。
摘要由CSDN通过智能技术生成

1.  

data = [{"a": 1, "b": 2, "c": 3}, 
        {"a": 11, "b": 22, "c": 33}, 
        {"a": 111, "b": 222, "c": 333}]
df = pd.DataFrame(data)
df

df['stat'] = df['a'].map(lambda x: 'big' if x > 100 else 'small')
df

2. 

def func(i):
    return 'big' if i > 100 else 'small'


df['b_stat'] = df['b'].map(func)
df

3. 分组聚合

data = [{"a": 1, "b": 2, "c": 3, "e": 4}, 
        {"a": 11, "b": 22, "c": 33,"e": 4}, 
        {"a": 111, "b": 222, "c": 333, "e": 41},
        {"a": 1, "b": 21, "c": 3, "e": 41}, 
        {"a": 11, "b": 22, "c": 33}, 
        {"a": 111, "b": 23, "c": 333},
        {"a": 1, "b": 2, "c": 3, "e": 4}, 
        {"a": 11, "b": 22, "c": 33}, 
        {"a": 111, "b": 24, "c": 333},
       ]
import pandas as pd
df = pd.DataFrame(data)
df

 

df = df.groupby(['a', 'b']).agg({'c': 'count', 'e': 'sum'}).reset_index(drop=False)
df

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值