Spark环境搭建以及基本的算子操作

在使用Spark程序的时候,采用的是Maven导入相应的数据包. Maven的依赖关系如下,因为只做了最简单的算子部分,利用JDBC连接Mysql数据库失败,问题还在排查中,因此暂时就先不展示从MySQL读取数据之后再进行计算的过程了,在后续的文章中将进行连接之后的操作.需要注意的是本文是在单机操作的,系统和编译环境如下

  • 操作系统 Mac OS X 10.14.6
  • IDE: IDEA社区版

具体配置截图如下

  • Project SDK Java 12
    在这里插入图片描述

  • Scala 2.12.7
    在这里插入图片描述

POM文件配置

<groupId>org.example</groupId>
    <artifactId>spark_test1</artifactId>
    <version>1.0-SNAPSHOT</version>

    <dependencies>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.12</artifactId>
            <version>3.1.2</version>
        </dependency>

        <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-sql -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.12</artifactId>
            <version>3.1.2</version>
<!--            <scope>provided</scope>-->
        </dependency>


        <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-mllib -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-mllib_2.12</artifactId>
            <version>3.1.2</version>
            <scope>provided</scope>
        </dependency>

    </dependencies>

配置完环境以及POM文件,就开始运行了,初始化

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SparkSession
import org.apache.spark._
import org.apache.spark.rdd.RDD
import org.apache.log4j.{Level, Logger}

import org.apache.spark.sql.functions._

object firstDemo{
  Logger.getLogger("org").setLevel(Level.ERROR)
  def main(args: Array[String]): Unit = {
    
    //初始化
    val conf = new SparkConf().setAppName(firstDemo.getClass.getSimpleName).setMaster("local")
    val sc = new SparkContext(conf)

	//最后阶段释放计算资源
	sc.stop()
    }

首先进行简单的元素统计

	val list = List("Hadoop","Spark","Flink","Flink")
    val listData = sc.parallelize(list)
    //前3个元素
    listData.take(3).foreach(println)
    //前4个元素
    listData.top(4).foreach(println)
    //元素统计
    println(listData.count())
    //长度大于5的元素
    listData.filter(_.length > 5).foreach(println)

接下来就是文本的mapping关系,本文简单介绍,暂时未从系统中读文件

	val list = List("Hadoop","Spark","Flink")
	//使用parallelize生成RDD
    val listData = sc.parallelize(list)
    //生产tuple,这一点类似于Map reduce过程
    val pair:RDD[(String,Int)] = listData.map((_,1))
    pair.foreach(print)

输出
在这里插入图片描述
使用groupByKey进行统计

listData.map((_,1)).groupByKey().map(t => (t._1,t._2.sum)).foreach(println)

接下来我们使用MapValue进行简单的一些操作

    val groupBykey = pair.groupByKey().map(t => (t._1,t._2.sum)).map(t => (t._1,t._2 * 2)).collect()
    groupBykey.foreach(print)
}

在很多文章中,推荐使用reduceByKey替代groupByKey,优化原因都讲的很清楚,可以参考别的文章

listData.map((_,1)).reduceByKey(_+_).foreach(println)

使用flatMap,映射每个元素到多个元素

listData.flatMap(x => 0 to x.length ).foreach(println)

上面简单介绍就结束了,后续继续使用Spark做一些简单计算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值