【学习笔记】离散数学(Discrete Math) -命题逻辑1

离散数学(Discrete Math)-命题逻辑

目录

离散数学(Discrete Math)-第一章 命题逻辑

 

逻辑命题Def:

算子运算符Def:

事件Def:

运算定律

代数运算


逻辑命题Def:

Proposition 命题 :A proposition is a declaration that is either true or false but not both.

Truth Value 真值 :The truth value of a true (or false respectively) proposition is True (or false respectively) and denoted by T (or F respectively).

Ex:

  1. 太阳的英文是sun。是命题 为真命题
  2. 2+5=9   是命题     为假命题
  3. X+8=0    不是命题
  4. 今天天气不错哦。  不是命题
  5. 请递给我课本。   不是命题

Propositional Variables命题变量:Propositional Variables are variables that represent propositions,e.q:  p,q,r…(小写)

propositions Caculus 命题运算 :The area of logic that deals with propositions is called propositions Caculus.

Compound Propositions 复合命题 : Compound Propositions are propositions that are formed from existing propositions using Logical Operators(逻辑算子).

Logical Operators 逻辑算子

Truth Table 真值表

logic puzzles 逻辑推理

算子运算符Def:

Negation Operator 否定运算符(横折 - )

例:

P

非P

0

1

1

0

Conjunction Operator 连接运算符(∧ AND)

例:

p

q

p∧q

0

0

0

0

1

0

1

0

0

1

1

1

 

Disjunction Operator 或运算符 (∨ OR)

例:

p

q

p∨q

0

0

0

0

1

1

1

0

1

1

1

1

Exclusive OR 异或 (圆里加号)

例:

p

q

P异或q

0

0

0

0

1

1

1

0

1

1

1

0

Conditional Operator 条件运算符(→)

p→q,若p则q。

例:

p

q

P→q

0

0

1

0

1

1

1

0

0

1

1

1

解释如下:若p则q,即(1,1)为真,(1,0)为假,但是若p=0,则对后面没影响,无论q为真或假,命题均为真命题。例:如果我买了一本书,那么晚饭我就会炒面。可是我没买书,那晚上炒不炒面就不依赖前面条件了,即无法通过p推出q,所以认为它是真命题。

p→q 等价于 q→q

Biconditional Operator 双条件运算符(<->)

p<->q 代表 (p→q)∧(q→p) 当且仅当

例:

p

Q

P→q

q→p

p<->q

0

0

1

1

1

0

1

1

0

0

1

0

0

0

0

1

1

1

1

1

运算优先级

not  >  and  >  or  >    >  <->

位运算

Bitwise OR

Bitwise AND

Bitwise XOR

事件Def:

A compound proposition is always true (or false resp) is called a tautology赘述 (or contradiction矛盾 ,resp),neither of them is contingency偶然事件.

Logical Eequivalence 逻辑等价 : The two compound proposition p and q are called logical equivalence , if p<->q is a tautology ,and is denoted as p≡q.

运算定律

 

结合律Associative laws

 (p∧q)∧r ≡p∧(q∧r)

交换律Commtative laws

P∧q ≡ q∧p   

p∨q ≡ q∨p

分配律Distributive laws

两者能相互分配

恒等率 Identity laws

p∧T ≡ p       

p∨F ≡ p

支配律/零律 Domination laws

p∨T ≡ T       

p∧F ≡ F

等幂律 Idempotent laws 

p∧T ≡ p       

p∨p ≡ p

对合律 Double negation

非非p ≡ p

德摩根律 De Morgan laws

类似于分配率

非(p∧q) ≡ 非p∨非q

非(p∨q) ≡ 非p∧非q

吸收律  Absorption laws

p∨(p∧q) ≡ p

p∧(p∨q) ≡ p

蕴含律 Conditional statement

p→q ≡ 非p∨q

(即只有10时为0)

逆反律Conditional statement

p→q ≡ 非q→非p

输出律

(p∧q) →r ≡ p→q →r

归谬律

(p→q) ∧(p→非q) ≡ 非p

 

代数运算

方法一:真值表

方法二:推演法·定律运用

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值