Ni:带有能量的原子数
k:玻尔兹曼常数
T:绝对温度
模拟退火算法流程
1. 初始化配置:温度T = 2
冷却速率=0.99
能量E=d(1,2)+d(2,3)+...+d(N,1)
2. 根据当前能量状态随机生成一个新的能量状态
3.
4. 判断:
if < 0, 接受当前新状态(下坡),作为下次位移的起点
else 接受当前新状态的概率为
本文介绍了模拟退火算法的基本流程,包括初始化配置、根据当前能量状态生成新状态、判断并按概率接受新状态以及温度更新。该算法在大数据处理中用于寻找全局最优解。
Ni:带有能量的原子数
k:玻尔兹曼常数
T:绝对温度
1. 初始化配置:温度T = 2
冷却速率=0.99
能量E=d(1,2)+d(2,3)+...+d(N,1)
2. 根据当前能量状态随机生成一个新的能量状态
3.
4. 判断:
if < 0, 接受当前新状态(下坡),作为下次位移的起点
else 接受当前新状态的概率为

被折叠的 条评论
为什么被折叠?