题目大意:有C个机器,K头牛,每个机器只能服务M头牛
现在给出每两点之间的距离,距离为0表示不可达
现在问:所有的牛都被服务到,且行走的距离的最大值最小值是多少
解题思路:最大值最小化,二分枚举
可以先用floyd处理一下每头牛到每个机器的最小距离
建图的话,就源点连接每头牛,容量为1
每个机器连接汇点,容量为m
现在要连接的是牛到机器的边,只要距离满足枚举距离的就可以连边了,容量为1(因为一条边不可能走两次)
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
const int MAXNODE = 250;
const int MAXEDGE = 100010;
typedef int Type;
const Type INF = 0x3f3f3f3f;
struct Edge {
int u, v, next;
Type cap, flow;
Edge() {}
Edge(int u, int v, Type cap, Type flow, int next): u(u), v(v), cap(cap), flow(flow), next(next) {}
};
struct ISAP {
int n, m, s, t;
Edge edges[MAXEDGE];
int head[MAXNODE], p[MAXNODE], num[MAXNODE], cur[MAXNODE], d[MAXNODE];
bool vis[MAXNODE];
void init(int n) {
this->n = n;
memset(head, -1, sizeof(head));
m = 0;
}
void AddEdge(int u, int v, Type cap) {
edges[m] = Edge(u, v, cap, 0, head[u]);
head[u] = m++;
edges[m] = Edge(v, u, 0, 0, head[v]);
head[v] = m++;
}
bool BFS() {
memset(vis, 0, sizeof(vis));
queue<int> Q;
for (int i = 0; i < n; i++)
d[i] = INF;
d[t] = 0;
vis[t] = 1;
Q.push(t);
while (!Q.empty()) {
int u = Q.front(); Q.pop();
for (int i = head[u]; ~i; i = edges[i].next) {
Edge &e = edges[i ^ 1];
if (!vis[e.u] && e.cap > e.flow) {
vis[e.u] = true;
d[e.u] = d[u] + 1;
Q.push(e.u);
}
}
}
return vis[s];
}
Type Augment() {
int u = t;
Type flow = INF;
while (u != s) {
Edge &e = edges[p[u]];
flow = min(flow, e.cap - e.flow);
u = edges[p[u]].u;
}
u = t;
while (u != s) {
edges[p[u]].flow += flow;
edges[p[u] ^ 1].flow -= flow;
u = edges[p[u]].u;
}
return flow;
}
Type Maxflow(int s, int t) {
this->s = s; this->t = t;
Type flow = 0;
BFS();
//如果s-->t走不通
if (d[s] >= n)
return 0;
memset(num, 0, sizeof(num));
for (int i = 0; i < n; i++)
cur[i] = head[i];
for (int i = 0; i < n; i++)
if (d[i] < INF)
num[d[i]]++;
int u = s;
while (d[s] < n) {
if (u == t) {
flow += Augment();
u = s;
}
bool ok = false;//纪录是否找到了下一个点
for (int i = cur[u]; ~i; i = edges[i].next) {
Edge &e = edges[i];
if (e.cap > e.flow && d[u] == d[e.v] + 1) {
ok = true;
p[e.v] = i;//点v由第i条边增广得到
cur[u] = i;//尝试到第i条边
u = e.v;
break;
}
}
//如果没找到下一个点,表示u到t的最短路要变长了,或者没路可走了
if (!ok) {
//找寻u到下一个点的最短路
int Min = n - 1;
for (int i = head[u]; ~i; i = edges[i].next) {
Edge &e = edges[i];
if (e.cap > e.flow)
Min = min(Min, d[e.v]);
}
if (--num[d[u]] == 0)//GAP优化
break;
num[d[u] = Min + 1]++;
cur[u] = head[u];
//返回前一个点,因为该点的最短距离已经变了
if (u != s)
u = edges[p[u]].u;
}
}
return flow;
}
}isap;
#define maxn 250
int k, c, m, source, sink;
int dis[maxn][maxn];
void build(int mid) {
source = 0, sink = k + c + 1;
isap.init(sink + 1);
for (int i = 1; i <= k; i++)
isap.AddEdge(i, sink, m);
for (int i = 1; i <= c; i++)
isap.AddEdge(source, i + k, 1);
for (int i = k + 1; i <= k + c; i++)
for (int j = 1; j <= k; j++)
if (dis[i][j] <= mid) isap.AddEdge(i, j, 1);
}
void solve() {
int l = 0, r = 21000, mid;
while (r >= l) {
mid = (r + l) / 2;
build(mid);
if (isap.Maxflow(source, sink) == c) r = mid - 1;
else l = mid + 1;
}
printf("%d\n", r + 1);
}
void floyd() {
for (int l = 1; l <= k + c; l++)
for (int i = 1; i <= k + c; i++)
for (int j = 1; j <= k + c; j++)
if (dis[i][j] > dis[i][l] + dis[l][j])
dis[i][j] = dis[i][l] + dis[l][j];
}
void init() {
for (int i = 1; i <= k + c; i++)
for (int j = 1; j <= k + c; j++) {
scanf("%d", &dis[i][j]);
if (!dis[i][j]) dis[i][j] = INF;
}
floyd();
}
int main() {
while (scanf("%d%d%d", &k, &c, &m) != EOF) {
init();
solve();
}
return 0;
}