题目大意:给出N个点,M条有向边
如果有向边的标号是1的话,就表示该边的上界下界都为容量
如果有向边的标号为0的哈,表示该边的下界为0,上界为容量
现在问,从1到N的最小流是多少,并输出每条边的流量
解题思路:上下界有源有汇最小流,基本模版
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
const int MAXNODE = 210;
const int MAXEDGE = 100010;
typedef int Type;
const Type INF = 0x3f3f3f3f;
struct Edge{
int u, v, next, id;
Type cap, flow;
Edge() {}
Edge(int u, int v, Type cap, Type flow, int next, int id) : u(u), v(v), cap(cap), flow(flow), next(next), id(id){}
};
struct Dinic{
int n, m, s, t;
Edge edges[MAXEDGE];
int head[MAXNODE];
int cur[MAXNODE];
bool vis[MAXNODE];
Type d[MAXNODE];
vector<int> cut;
void init(int n) {
this->n = n;
memset(head, -1, sizeof(head));
m = 0;
}
void AddEdge(int u, int v, Type cap, int id) {
edges[m] = Edge(u, v, cap, 0, head[u], id);
head[u] = m++;
edges[m] = Edge(v, u, 0, 0, head[v], id);
head[v] = m++;
// printf("u is %d v is %d cap is %d\n", u, v, cap);
}
bool BFS() {
memset(vis, 0, sizeof(vis));
queue<int> Q;
Q.push(s);
d[s] = 0;
vis[s] = 1;
while (!Q.empty()) {
int u = Q.front(); Q.pop();
for (int i = head[u]; ~i; i = edges[i].next) {
Edge &e = edges[i];
if (!vis[e.v] && e.cap > e.flow) {
vis[e.v] = true;
d[e.v] = d[u] + 1;
Q.push(e.v);
}
}
}
return vis[t];
}
Type DFS(int u, Type a) {
if (u == t || a == 0) return a;
Type flow = 0, f;
for (int &i = cur[u]; i != -1; i = edges[i].next) {
Edge &e = edges[i];
if (d[u] + 1 == d[e.v] && (f = DFS(e.v, min(a, e.cap - e.flow))) > 0) {
e.flow += f;
edges[i ^ 1].flow -= f;
flow += f;
a -= f;
if (a == 0) break;
}
}
return flow;
}
Type Maxflow(int s, int t) {
this->s = s; this->t = t;
Type flow = 0;
while (BFS()) {
for (int i = 0; i < n; i++)
cur[i] = head[i];
flow += DFS(s, INF);
}
return flow;
}
void Mincut() {
cut.clear();
for (int i = 0; i < m; i += 2) {
if (vis[edges[i].u] && !vis[edges[i].v])
cut.push_back(i);
}
}
bool judge() {
for (int i = head[s]; ~i; i = edges[i].next)
if (edges[i].cap - edges[i].flow != 0) return false;
return true;
}
}dinic;
#define maxn 110
#define maxm 10010
int n, m;
int d[maxn], ans[maxm];
void init() {
int source = n + 1, sink = n + 2;
dinic.init(sink + 1);
memset(d, 0, sizeof(d));
memset(ans, 0, sizeof(ans));
int u, v, c, f;
for (int i = 1; i <= m; i++) {
scanf("%d%d%d%d", &u, &v, &c, &f);
if (f) {
d[u] -= c; d[v] += c; ans[i] = c;
}
else dinic.AddEdge(u, v, c, i);
}
int tot = dinic.m;
for (int i = 1; i <= n; i++) {
if (d[i] > 0) dinic.AddEdge(source, i, d[i], 0);
if (d[i] < 0) dinic.AddEdge(i, sink, -d[i], 0);
}
dinic.Maxflow(source, sink);
dinic.AddEdge(n, 1, INF, 0);
dinic.Maxflow(source, sink);
if (!dinic.judge()) printf("Impossible\n");
else {
printf("%d\n", dinic.edges[dinic.m - 2].flow);
for (int i = 0; i < tot; i += 2)
ans[dinic.edges[i].id] += dinic.edges[i].flow;
for (int i = 1; i <= m; i++)
if (i ^ m)
printf("%d ", ans[i]);
else
printf("%d\n", ans[i]);
}
}
int main() {
while (scanf("%d%d", &n, &m) != EOF) {
init();
}
return 0;
}