LightOJ - 1180 Software Company(二分+dp)

该博客介绍了如何运用二分搜索和动态规划策略来解决一个涉及两个任务和多个工人的最短完成时间问题。给定每个工人完成任务各部分所需的时间,博主探讨了如何在确保同时完成所有任务的前提下,找到最小的总耗时。

题目大意:有两个任务,每个任务分成M块,有K个工人,给出每个工人完成每个任务每块所需要花费的时间,问同时完成任务时,至少需要花费多少时间

解题思路:用dp[i][j]表示用前i个工人完成第一个任务的j块时,能完成第二个任务的多少块
接着二分时间,再枚举工人,假设枚举到时间为mid,第i个工人,要求完成k块任务
则dp[i][j] = max(dp[i][j], (mid - k * timeA[i]) / timeB[i] + dp[i][j - k])
表示第i个工人完成第一个任务的k块后,剩余的时间去完成B任务了

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 110;

int a[N], b[N], dp[N];
int n, m, cas = 1;
void init() {
    scanf("%d%d", &n, &m);
    for (int i = 0; i < n; i++)
        scanf("%d%d", &a[i], &b[i]);
}

bool judge(int mid) {
    memset(dp, -1, sizeof(dp));
    dp[0] = 0;

    for (int i = 0; i < n; i++) {
        int All = mid / a[i];
        for (int j = m; j >= 0; j--)
            for (int k = 0; k <= All && k <= j; k++)
                if (~dp[j - k])
                    dp[j] = max(dp[j], dp[j - k] + (mid - k * a[i]) / b[i]);
    }
    return dp[m] >= m;
}

void solve() {
    int l = 0, r = 50010;
    while (l <= r) {
        int mid = (l + r) >> 1;
        if (judge(mid)) r = mid - 1;
        else l = mid + 1;
    }
    printf("Case %d: %d\n", cas++, r + 1);
}

int main() {
    int test;
    scanf("%d", &test);
    while(test--) {
        init();
        solve();
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值