题目大意:有两个任务,每个任务分成M块,有K个工人,给出每个工人完成每个任务每块所需要花费的时间,问同时完成任务时,至少需要花费多少时间
解题思路:用dp[i][j]表示用前i个工人完成第一个任务的j块时,能完成第二个任务的多少块
接着二分时间,再枚举工人,假设枚举到时间为mid,第i个工人,要求完成k块任务
则dp[i][j] = max(dp[i][j], (mid - k * timeA[i]) / timeB[i] + dp[i][j - k])
表示第i个工人完成第一个任务的k块后,剩余的时间去完成B任务了
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 110;
int a[N], b[N], dp[N];
int n, m, cas = 1;
void init() {
scanf("%d%d", &n, &m);
for (int i = 0; i < n; i++)
scanf("%d%d", &a[i], &b[i]);
}
bool judge(int mid) {
memset(dp, -1, sizeof(dp));
dp[0] = 0;
for (int i = 0; i < n; i++) {
int All = mid / a[i];
for (int j = m; j >= 0; j--)
for (int k = 0; k <= All && k <= j; k++)
if (~dp[j - k])
dp[j] = max(dp[j], dp[j - k] + (mid - k * a[i]) / b[i]);
}
return dp[m] >= m;
}
void solve() {
int l = 0, r = 50010;
while (l <= r) {
int mid = (l + r) >> 1;
if (judge(mid)) r = mid - 1;
else l = mid + 1;
}
printf("Case %d: %d\n", cas++, r + 1);
}
int main() {
int test;
scanf("%d", &test);
while(test--) {
init();
solve();
}
return 0;
}
该博客介绍了如何运用二分搜索和动态规划策略来解决一个涉及两个任务和多个工人的最短完成时间问题。给定每个工人完成任务各部分所需的时间,博主探讨了如何在确保同时完成所有任务的前提下,找到最小的总耗时。
287

被折叠的 条评论
为什么被折叠?



