题目大意:有N个车站,M1辆火车从车站1开到车站n,M2辆火车从车站n开到车站1
现在有一个间谍从车站1出发,要求在T时刻的时候和火车站n的另外一名间谍见面
为了不引起怀疑,这个间谍必须将等车时间降到最小
问这个间谍从车站1出发,在T时刻去车站n见另一个间谍的等车时间的最小值
解题思路:这题有两个状态,一个是时间,另一个就是车站了,所以我们设dp[i][j]为在i时刻,j车站的等车时间的最小值
那么就有三种情况了
1.继续等1分钟
2.搭乘往右开的车(如果有)
3.搭乘往左开的车(如果有)
因为要搭车,所以我们要预先处理一下哪个车站哪一时刻有车要开,所以设一个数组has_tarin[i][j][k],表示i时刻,j车站,k方向是否有车要开动,这样就可以得到转移方程了
dp[i][j] = min(dp[i+1][j] + 1, dp[ i+t[j] ][j + 1], dp[i + t[j-1] ][j - 1])
后面两种情况要判断
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int M = 210;
const int N = 60;
const int INF = 0x3f3f3f3f;
int n, T, M1, M2, t[N], d[N], e[N];
int dp[M][N], cas = 1;
bool has_train[M][N][2];
void init() {
scanf("%d", &T);
for(int i = 1; i <= n - 1; i++)
scanf("%d", &t[i]);
scanf("%d", &M1);
for(int i = 1; i <= M1; i++)
scanf("%d", &d[i]);
scanf("%d", &M2);
for(int i = 1; i <= M2; i++)
scanf("%d", &e[i]);
memset(has_train, 0, sizeof(has_train));
for(int i = 1; i <= M1; i++) {
int tmp = d[i];
has_train[tmp][1][0] = true;
for(int j = 1; j <= n - 1; j++) {
tmp += t[j];
if(tmp > T)
break;
has_train[tmp][j+1][0] = true;
}
}
for(int i = 1; i <= M2; i++) {
int tmp = e[i];
has_train[tmp][n][1] = true;
for(int j = n - 1; j >= 1; j--) {
tmp += t[j];
if(tmp > T)
break;
has_train[tmp][j][1] = true;
}
}
}
void solve() {
for(int i = 1; i <= n - 1; i++)
dp[T][i] = INF;
dp[T][n] = 0;
for(int i = T - 1; i >= 0; i--) {
for(int j = 1; j <= n; j++) {
dp[i][j] = dp[i+1][j] + 1;
if(j < n && has_train[i][j][0] && i + t[j] <= T)
dp[i][j] = min(dp[i][j], dp[i+t[j]][j+1]);
if(j > 1 && has_train[i][j][1] && i + t[j-1] <= T)
dp[i][j] = min(dp[i][j], dp[i+t[j-1]][j-1]);
}
}
printf("Case Number %d: ", cas++);
if(dp[0][1] >= INF)
printf("impossible\n");
else
printf("%d\n", dp[0][1]);
}
int main() {
while(scanf("%d", &n) != EOF && n) {
init();
solve();
}
return 0;
}