从训练好的LLM中消除受版权保护的数据 - 可能吗?

大型语言模型中删除受版权保护数据的可能性

引言

在人工智能和机器学习领域,大型语言模型(LLM)展示了巨大的成就,同时也面临着挑战。LLM模型通过训练大量的文本数据集,吸收了人类的语言和知识。然而,它们吸收和模仿人类理解的能力带来了法律、伦理和技术上的挑战。此外,为LLM提供动力的海量数据集可能包含有毒材料、受版权保护的文本、不准确的内容或个人数据。使LLM忘记选定数据已成为确保合法合规和伦理责任的一个紧迫问题。本文将探讨使LLM忘记受版权保护数据的概念,以解决一个基本问题:这是否可能?

为什么需要LLM的遗忘?

LLM通常包含有争议的数据,包括受版权保护的数据。在LLM中拥有此类数据会带来与私人信息、有偏见的信息、版权数据和错误或有害元素相关的法律挑战。因此,遗忘对于确保LLM遵守隐私法规和版权法,促进负责任和伦理的LLM至关重要。然而,从这些模型获得的大量知识中提取受版权保护的内容是具有挑战性的。以下是一些可以帮助解决这个问题的遗忘技术:

  • 数据过滤:系统地识别并从模型的训练数据中移除受版权保护元素、噪声或有偏见的数据。然而,过滤过程可能会导致在过滤过程中丢失有价值的非受版权保护信息。
    • 梯度方法:这些方法根据损失函数的梯度调整模型的参数,解决ML模型中的受版权保护数据问题。然而,调整可能会对模型在非受版权保护数据上的整体性能产生不利影响。
    • 在上下文中遗忘:这种技术通过更新模型的参数,有效地消除了特定训练点对模型的影响,而不影响无关的知识。然而,这种方法在实现精确遗忘方面存在局限性,尤其是在大型模型中,其有效性需要进一步评估。
      这些技术资源密集且耗时,因此难以实施。

案例研究

为了理解LLM遗忘的重要性,这些现实世界的案例突显了公司如何因大型语言模型(LLM)和受版权保护数据而面临法律挑战。

  • OpenAI诉讼:OpenAI,一家知名的人工智能公司,因LLM的训练数据而面临多起诉讼。这些法律行动质疑LLM训练中使用受版权保护材料的问题。此外,它们引发了关于模型采用何种机制来获取每个受版权保护作品整合到其训练过程中的许可的调查。
    • Sarah Silverman诉讼:Sarah Silverman案涉及一项指控,即ChatGPT模型未经授权生成了她的书的摘要。这一法律行动突显了关于人工智能和受版权保护数据的未来重要问题。
      更新法律框架以适应技术进步,确保负责任和合法地利用人工智能模型。此外,研究界必须全面解决这些挑战,以使LLM变得道德和公平。

传统LLM遗忘技术

LLM的遗忘就像从复杂的食谱中分离特定的成分,确保只有所需的成分对最终菜肴产生影响。传统的LLM遗忘技术,如使用精选数据进行微调和重新训练,缺乏直接从模型中移除受版权保护数据的机制。他们广泛的方法往往证明对于选择性遗忘的复杂任务效率低下且资源密集,因为他们需要广泛的重新训练。

虽然这些传统方法可以调整模型的参数,但他们很难精确地针对受版权保护的内容,冒着无意中丢失数据和不合规的风险。因此,传统技术的局限性需要通过实验探索替代的遗忘技术。

新技术:遗忘训练数据的一个子集

微软的研究论文介绍了一种在LLM中遗忘受版权保护数据的前沿技术。以Llama2-7b模型和《哈利波特》书籍为例,该方法包括三个核心组件,使LLM忘记《哈利波特》的世界。这些组件包括:

  • 加强模型识别:创建加强模型涉及微调目标数据(例如,《哈利波特》),以加强其对要遗忘的内容的知识。
    • 替换独特的表达:在目标数据中,独特的《哈利波特》表达被通用表达所取代,促进更通用的理解。
    • 在替代预测上微调:基于这些替代预测,对基线模型进行微调。基本上,当面对相关上下文时,它有效地从其记忆中删除原始文本。
      虽然微软的技术还处于早期阶段,可能存在局限性,但它代表了一个朝着更强大、更有伦理和适应性更强的LLM的进步。

新技术的结果

微软研究论文中提出的使LLM忘记受版权保护数据的新方法,是朝着负责任和有伦理的模型迈出的一步。这项新技术涉及从Meta的Llama2-7b模型中删除与《哈利波特》相关的内容,该模型已知在包含受版权作品的“books3”数据集上进行了训练。值得注意的是,即使面对通用提示,该模型的原生响应也展示了对J.K.罗琳宇宙的复杂理解。

然而,微软提出的技术显著改变了其响应。以下是一些提示的示例,展示了原始Llama2-7b模型和微调版本之间的显著差异。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这个表格说明,微调后的遗忘模型在不同的基准测试(如Hellaswag、Winogrande、piqa、boolq和arc)上保持了它们的性能。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这种评估方法,依赖于模型提示和随后的响应分析,证明是有效的,但可能会忽略更复杂的对抗性信息提取方法。

虽然这项技术很有前景,但需要进一步的研究来改进和扩展,特别是在解决LLM中更广泛的遗忘任务方面。

新遗忘技术的挑战

虽然微软的遗忘技术显示出前景,但仍存在一些人工智能版权挑战和限制。

  • 受版权信息泄露:在微调过程中,该方法可能无法完全消除受版权信息泄露的风险,因为模型在微调过程中可能保留了一些目标内容的知识。
    • 各种数据集的评估:为了评估有效性,该技术必须在更多样化的数据集上进行额外的评估,因为最初的实验仅专注于《哈利波特》书籍。
    • 可扩展性:在更大的数据集和更复杂的语言模型上进行测试是至关重要的,以评估该技术在现实世界场景中的适用性和适应性。
      随着与人工智能相关的法律案件,特别是针对LLM的版权诉讼的增加,需要明确的指导方针。像微软提出的遗忘方法这样的有希望的发展,为负责任、合法和有责任的人工智能铺平了道路。

不要错过人工智能和机器学习的最新新闻和分析 - 今天访问unite.ai。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值