反常积分和定积分的应用 2

前言

力大出奇迹。好好加油。

伽马函数的推论

γ a n d Γ \gamma \\ and \\ \Gamma γandΓ

关于数学的思考

数学是最重要的初试科目,没有之一。微元法比较简单,考试的时候感觉用不上,只能作为一个引子。定积分的应用感觉就是套公式和做计算。不知道自己的理解是不是正确的。

平面图形的面积

分为两种情况,一种是往横轴投影,一种是往纵轴投影,往横轴投影需要投影的线是和横轴铅锤的,往纵轴投影,需要投影的线和纵轴是垂直的。然后两种不同的情况,选择的积分变量,积分区间也是不同的。注意这里是观察哪个函数更大,作为被减数。比较大的曲线作为被减数。因为这里是求面积,但是定积分的几何意义并不是直接就是面积。

做题就是,根据题目条件,比如说给一个公共切线,就是切点相等,导数在切点处相等。实际上对于 x ,对于 y 积分,对于求面积来说都是可行的。条件可能就是让我们把曲线的表达式,积分区间算出来。

公式和计算都是比较困难的一件事情。都需要长时间的训练才能记住和熟练使用。计算的时候有非常多的小 tricks ,很可能换元一下用点火公式之类的二级结论,做题非常非常快速。或者配凑一个完全平方公式,平方差公式之类的。

笛卡尔心形线

在这里插入图片描述

伯努利双纽线

这种特殊的线,可能和我们常用的函数差不多。记住表达式和图形应该就好了。另外有一部分知识点和笔记确实一定要整理一下,不然假设就让它这样遗失在记忆中,就成为了永远的知识漏洞。我能接受我从来没有见过它,但是我不能接受我本有机会改变,努力一次的。

回顾

有时间要多多复习。多多复习前面的内容。比如现在复习到了积分,要复习复习极限和连续。今天开始一定要十一点睡觉。

参数方程求面积

星型线

在这里插入图片描述

摆线

旋转体体积

旋转体体积感觉也是直接记公式。认为这个东西学不好主要是花的时间和精力不够。有两个公式,一个是绕横轴旋转,另一个是绕纵轴旋转。是的,一定要把关口把握好,一定要把机会把握住,我必须考虑这是不是我此生绝无仅有的机会。

一般轴线旋转

薄壁空心桶。算体积是圆的周长乘以桶的高度。感觉还是有一定的操作性。还是得理解这里面的原理。本质是微元法来处理。古尔金。

被积函数有负数部分

绕水平轴旋转没有影响。

绕纵轴旋转有影响。要把负数部分变为相反数。

感觉就是做题没有做透彻,还有做的题的数量不够。。。

曲线的弧长

弧长的微分。然后求积分。微分的几何意义是切线的纵坐标增量。算了这种公式的推导都没什么意思,把公式记住能做题就好了。

最后一个部分内容-旋转曲面侧表面积

第一型曲面积分是什么,现在完全不知道是什么东西。读题时需要注意是侧表面积还是表面积。所以做题是一个需要非常谨慎地来进行的一个操作。

直角坐标系

要结合弧长的公式来写这里的公式。

极坐标系

周长乘以弧长

参数方程

仍然是周长乘以弧长。积分计算真的繁琐复杂,都不想看到。让人感到厌烦。

总结

面积,旋转体体积,弧长,侧表面积。总而言之就是这四个问题,然后几个简单的公式,然后就是积分的运算能力。看似写了一些笔记,实际上还是要落到实处的计算,先把网课的进度跟上,然后再慢慢完善一些细节。

内容概要:该白皮书由IEEE发布,聚焦于电信领域大规模AI(尤其是大型电信模型,即LTMs)的发展,旨在为电信行业向6G演进提供创新解决方案。白皮书首先介绍了生成式AI在电信领域的应用潜力,强调其在实时网络编排、智能决策自适应配置等方面的重要性。随后,详细探讨了LTMs的架构设计、部署策略及其在无线接入网(RAN)与核心网中的具体应用,如资源分配、频谱管理、信道建模等。此外,白皮书还讨论了支持LTMs的数据集、硬件要求、评估基准以及新兴应用场景,如基于边缘计算的分布式框架、联邦学习等。最后,白皮书关注了监管伦理挑战,提出了数据治理问责制作为确保LTMs可信运行的关键因素。 适合人群:对电信行业及AI技术感兴趣的科研人员、工程师及相关从业者。 使用场景及目标:①理解大规模AI在电信领域的应用现状发展趋势;②探索如何利用LTMs解决电信网络中的复杂问题,如资源优化、频谱管理等;③了解LTMs在硬件要求、数据集、评估基准等方面的最新进展;④掌握应对LTMs带来的监管伦理挑战的方法。 其他说明:白皮书不仅提供了理论技术层面的深度剖析,还结合了大量实际案例应用场景,为读者提供了全面的参考依据。建议读者结合自身背景,重点关注感兴趣的具体章节,如特定技术实现或应用案例,并参考提供的文献链接进行深入研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三冬四夏会不会有点漫长

一块钱也是支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值