积分那些事

本文深入解析积分的四大概念:原函数、不定积分、定积分和变限积分,以及反常积分。详细阐述它们的定义、存在定理、几何意义和性质,特别探讨了含有间断点的函数积分问题。通过实例和定理证明,揭示了积分在理论和应用中的不同侧重和相互关系。
摘要由CSDN通过智能技术生成


前言

原函数、不定积分、定积分、变限积分、反常积分这些积分傻傻分不清,总感觉是换了马甲的同一东西。下面就分别介绍这些常见积分,并阐明他们之间的区别和联系。


一、原函数与不定积分

1、定义

设函数 f ( x ) f(x) f(x) 定义在某区间 I I I 上,若存在可导函数 F ( x ) F(x) F(x),对于该区间上 任意一点 都有 F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x) 成立,则称 F ( x ) F(x) F(x) f ( x ) f(x) f(x) 在区间上 I I I 上的一个原函数。一般地,“在区间 I I I 上” 几个字省去。
F ( x ) F(x) F(x) f ( x ) f(x) f(x) 的一个原函数,则 F ( x ) + C F(x)+C F(x)+C 也是 f ( x ) f(x) f(x) 的原函数,并且 f ( x ) f(x) f(x) 的原函数必定是 F ( x ) + C F(x)+C F(x)+C 的形式。
f ( x ) f(x) f(x) 的原函数的 一般表达式 F ( x ) + C F(x)+C F(x)+C 称为 f ( x ) f(x) f(x) 的不定积分,记成 ∫ f ( x ) d x = F ( x ) + C \int{f(x)}dx=F(x)+C f(x)dx=F(x)+C 其中 F ( x ) F(x) F(x) f ( x ) f(x) f(x)任意一个确定 的原函数,C是任意常数。

2、存在定理

① 连续函数 f ( x ) f(x) f(x) 必有原函数 F ( x ) F(x) F(x).

② 含有第一类间断点、无穷间断点的函数 f ( x ) f(x) f(x) 在包含该间断点的区间内必没有原函数 F ( x ) F(x) F(x)注: 证明见附1、附2)。

③ 含有振荡间断点的函数可能有原函数
证明:举例证明。 f ( x ) = { 2 x sin ⁡ ( 1 x ) − cos ⁡ ( 1 x ) x ≠ 0 0 x = 0 f(x) = \begin{cases} 2x\sin({\frac{1}{x}})-\cos({\frac{1}{x}}) &\text{} x \neq 0\\ 0 &\text{} x = 0 \end{cases} f(x)={2xsin(x1)cos(x1)0x=0x=0 ( − ∞ , + ∞ ) (-\infin,+\infin) (,+) 上不连续,它有一个振荡间断点 x = 0 x=0 x=0,但是它在 ( − ∞ , + ∞ ) (-\infin, +\infin) (,+) 上存在原函数 F ( x ) = { x 2 sin ⁡ ( 1 x ) x ≠ 0 0 x = 0 F(x) = \begin{cases} x^2\sin({\frac{1}{x}}) &\text{} x \neq 0\\ 0 &\text{} x = 0 \end{cases} F(x)={x2sin(x1)0x=0x=0 即对于 ( − ∞ , + ∞ ) (-\infin,+\infin) (,+) 上任一点都有 F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x) 成立。

二、定积分

1、定义

若函数 f ( x ) f(x) f(x) 在区间 [ a , b ] [a,b] [a,b] 上有界,在 ( a , b ) (a, b) (a,b)任取 n − 1 n-1 n1 个分点 x k ( k = 1 , 2 , 3 , ⋯   , n − 1 ) x_k(k=1,2,3,\dotsb,n-1) xk(k=1,2,3,,n1),定义 x 0 = a x_0=a x0=a x n = b x_n=b xn=b,且 a = x 0 < x 1 < x 2 < x 3 < ⋯ < x n − 1 < x n = b a=x_0<x_1<x_2<x_3<\dotsb<x_{n-1}<x_n=b a=x0<x1<x2<x3<<xn1<xn=b,记 Δ x k = x k − x k − 1 \Delta x_k=x_k-x_{k-1} Δxk=xkxk1 k = 1 , 2 , 3 , ⋯   , n k=1,2,3,\dotsb,n k=1,2,3,,n. 并任取 ξ k ∈ [ x k − 1 , x k ] \xi_k \in [x_{k-1},x_{k}] ξk[xk1,xk],记 λ = max ⁡ 1 ⩽ k ⩽ n Δ x k \lambda=\underset{1 \leqslant k \leqslant n}{\max}\Delta x_k λ=1knmaxΔxk,当 λ → 0 \lambda \to 0 λ0 时,极限 lim ⁡ λ → 0 ∑ k = 1 n f ( ξ k ) Δ x k \lim\limits_{\lambda \to 0}\displaystyle\sum_{k=1}^{n}f(\xi_k) \Delta x_k λ0limk=1nf(ξk)Δxk 存在且与分点 x k x_k xk ξ k \xi_k ξk 的取法无关,则称函数 f ( x ) f(x) f(x) 在区间 [ a , b ] [a,b] [a,b] 上可积,即 ∫ a b f ( x ) d x = lim ⁡ λ → 0 ∑ k = 1 n f ( ξ k ) Δ x k \int_a^b f(x) dx=\lim\limits_{\lambda \to 0}\displaystyle\sum_{k=1}^{n}f(\xi_k) \Delta x_k abf(x)dx=λ0limk=1nf(ξk)Δxk. 当在 ( a , b ) (a,b) (a,b) n n n 等分时可获得定积分定义为 ∫ a b f ( x ) d x = lim ⁡ n → ∞ ∑ i = 1 n f ( a + b − a n i ) b − a n \int_a^b f(x) dx=\lim\limits_{n \to \infin}\displaystyle\sum_{i=1}^{n}f(a+\frac{b-a}{n}i) \frac{b-a}{n} abf(x)dx=nlimi=1nf(a+nbai)nba. 这种积分又被称为黎曼积分。

2、几何意义

① 设 ∫ a b f ( x ) d x \int_a^b f(x) dx abf(x)dx 存在,若在 [ a , b ] [a,b] [a,b] f ( x ) ⩾ 0 f(x) \geqslant 0 f(x)0,则 ∫ a b f ( x ) d x \int_a^b f(x) dx abf(x)dx 的值等于以曲线 y = f ( x ) y=f(x) y=f(x) x = a x=a x=a x = b x=b x=b x x x 轴所围城的曲边梯形的面积。
② 若在 [ a , b ] [a,b] [a,b] f ( x ) ⩽ 0 f(x) \leqslant 0 f(x)0,则 ∫ a b f ( x ) d x \int_a^b f(x) dx abf(x)dx 的值等于以曲线 y = f ( x ) y=f(x) y=f(x) x = a x=a x=a x = b x=b x=b x x x 轴所围城的曲边梯形的面积的负值。
③ 若在 [ a , b ] [a,b] [a,b] f ( x ) f(x) f(x) 的值有正也有负,则 ∫ a b f ( x ) d x \int_a^b f(x) dx abf(x)dx 在几何上表示 y = f ( x ) y=f(x) y=f(x) x = a x=a x=a x = b x=b x=b x x x 轴所围成的 x x x 轴上方图形的面积减去下方图形的面积所得之差。

3、存在定理

定积分的存在性,也称之为一元函数的(常义)可积性。这里的 “常义” 是指 “区间有限,函数有界”,也有人称为 “黎曼” 可积性。
① 充分条件
I. 若 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上连续,则 ∫ a b f ( x ) d x \int_a^b f(x) dx abf(x)dx 存在.
II. 若 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上单调,则 ∫ a b f ( x ) d x \int_a^b f(x) dx abf(x)dx 存在.
III. 若 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上有界,且只有有限个间断点,则 ∫ a b f ( x ) d x \int_a^b f(x) dx abf(x)dx 存在.
IV. 若 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上只有有限个第一类间断点,则 ∫ a b f ( x ) d x \int_a^b f(x) dx abf(x)dx 存在.
② 必要条件
若可积函数必有界,即若定积分 ∫ a b f ( x ) d x \int_a^b f(x) dx abf(x)dx 存在,则 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上有界。

三、变限积分

1、定义

x x x [ a , b ] [a,b] [a,b] 上变动时,对应于每一个 x x x 值,积分 ∫ a x f ( t ) d t \int_a^x f(t) dt axf(t)dt 就有一个确定的值,因此 ∫ a x f ( t ) d t \int_a^x f(t) dt axf(t)dt 是一个变上限的函数,记作 Φ ( x ) = ∫ a x f ( t ) d t ( a ⩽ x ⩽ b ) \Phi(x)=\int_a^x f(t) dt(a \leqslant x \leqslant b) Φ(x)=axf(t)dt(axb),称函数 Φ ( x ) \Phi(x) Φ(x) 为变上限的定积分。同理可以定义变下限的定积分和上、下限都变化的定积分,这些都称为变限积分。事实上,变限积分就是定积分的推广。

2、存在定理

同定积分

3、性质

① 连续性
f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上可积,则 ∫ a x f ( t ) d t \int_a^x f(t) dt axf(t)dt [ a , b ] [a,b] [a,b] 上连续。

② 可导性
I. 全局可导性:设 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上连续,则 ∫ a x f ( t ) d t \int_a^x f(t) dt axf(t)dt [ a , b ] [a,b] [a,b] 上可导且 ( ∫ a x f ( t ) d t ) ′ = f ( x ) (\int_a^x f(t) dt)'=f(x) (axf(t)dt)=f(x).
II. 定点可导性:若 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上除点 x = x 0 ∈ ( a , b ) x=x_0 \in (a,b) x=x0(a,b) 外均连续。
1). 若 x = x 0 x=x_0 x=x0 连续,则 F ( x ) = ∫ a x f ( t ) d t F(x)=\int_a^x f(t) dt F(x)=axf(t)dt x = x 0 x=x_0 x=x0 处可导,且 F ′ ( x 0 ) = f ( x 0 ) F'(x_0)=f(x_0) F(x0)=f(x0).
2). 若 x = x 0 x=x_0 x=x0 为可去间断点,则 F ( x ) = ∫ a x f ( t ) d t F(x)=\int_a^x f(t) dt F(x)=axf(t)dt x = x 0 x=x_0 x=x0 处可导,且 F ′ ( x 0 ) = lim ⁡ x → x 0 f ( x ) F'(x_0)=\lim\limits_{x \to x_0}{f(x)} F(x0)=xx0limf(x).
3). 若 x = x 0 x=x_0 x=x0 为跳跃间断点,则 F ( x ) = ∫ a x f ( t ) d t F(x)=\int_a^x f(t) dt F(x)=axf(t)dt x = x 0 x=x_0 x=x0 处连续但不可导,且 F + ′ ( x 0 ) = f ( x 0 + ) , F − ′ ( x 0 ) = f ( x 0 − ) F'_+(x_0)=f(x_0^+), F'_-(x_0)=f(x_0^-) F+(x0)=f(x0+),F(x0)=f(x0).

四、反常积分

1、定义

1)、无穷区间上的反常积分

① 设 f ( x ) f(x) f(x) [ a , + ∞ ) [a,+\infin) [a,+) 上的连续函数,如果极限 lim ⁡ t → + ∞ ∫ a t f ( x ) d x \lim\limits_{t \to +\infin}{\int_a^t f(x) dx} t+limatf(x)dx 存在,则称此极限为函数 f ( x ) f(x) f(x) 在无穷区间 [ a , + ∞ ) [a,+\infin) [a,+) 上的反常积分,记作 ∫ a + ∞ f ( x ) d x \int_a^{+\infin} f(x) dx a+f(x)dx,即 ∫ a + ∞ f ( x ) d x = lim ⁡ t → + ∞ ∫ a t f ( x ) d x \int_a^{+\infin} f(x) dx=\lim\limits_{t \to +\infin}{\int_a^t f(x) dx} a+f(x)dx=t+limatf(x)dx,这时也称反常积分 ∫ a + ∞ f ( x ) d x \int_a^{+\infin} f(x) dx a+f(x)dx 收敛。如果上述极限不存在,则称反常积分 ∫ a + ∞ f ( x ) d x \int_a^{+\infin} f(x) dx a+f(x)dx 发散。
② 设 f ( x ) f(x) f(x) ( − ∞ , b ] (-\infin,b] (,b] 上的连续函数,可类似的定义函数 f ( x ) f(x) f(x) 在无穷区间 ( − ∞ , b ] (-\infin,b] (,b] 上的反常积分 ∫ − ∞ b f ( x ) d x = lim ⁡ t → − ∞ ∫ t b f ( x ) d x \int_{-\infin}^{b} f(x) dx=\lim\limits_{t \to -\infin}{\int_t^b f(x) dx} bf(x)dx=tlimtbf(x)dx.
③ 设 f ( x ) f(x) f(x) ( − ∞ , + ∞ ) (-\infin,+\infin) (,+) 上的连续函数,如果反常积分 ∫ − ∞ 0 f ( x ) d x \int_{-\infin}^{0} f(x) dx 0f(x)dx ∫ 0 + ∞ f ( x ) d x \int_0^{+\infin} f(x) dx 0+f(x)dx 都收敛,则称反常积分 ∫ − ∞ + ∞ f ( x ) d x \int_{-\infin}^{+\infin} f(x) dx +f(x)dx 收敛,且 ∫ − ∞ + ∞ f ( x ) d x = ∫ − ∞ 0 f ( x ) d x + ∫ 0 + ∞ f ( x ) d x \int_{-\infin}^{+\infin} f(x) dx=\int_{-\infin}^{0} f(x) dx + \int_0^{+\infin} f(x) dx +f(x)dx=0f(x)dx+0+f(x)dx 如果 ∫ − ∞ 0 f ( x ) d x \int_{-\infin}^{0} f(x) dx 0f(x)dx ∫ 0 + ∞ f ( x ) d x \int_0^{+\infin} f(x) dx 0+f(x)dx 之一发散,则称 ∫ − ∞ + ∞ f ( x ) d x \int_{-\infin}^{+\infin} f(x) dx +f(x)dx 发散。

2)、无界函数的反常积分

如果函数 f ( x ) f(x) f(x) 在点 a a a 的任一邻域内都无界,那么点 a a a 称为函数 f ( x ) f(x) f(x) 的瑕点(也称为无界点)。无界函数的反常积分也称为瑕积分。
① 设 f ( x ) f(x) f(x) ( a , b ] (a,b] (a,b] 上的连续函数,点 a a a 为函数 f ( x ) f(x) f(x) 的瑕点。如果极限 lim ⁡ t → a + ∫ t b f ( x ) d x \lim\limits_{t \to a^+}{\int_t^b f(x) dx} ta+limtbf(x)dx 存在,则称此极限为函数 f ( x ) f(x) f(x) 在区间 [ a , b ] [a,b] [a,b] 上的反常积分,记作 ∫ a b f ( x ) d x \int_a^b f(x) dx abf(x)dx,即 ∫ a b f ( x ) d x = lim ⁡ t → a + ∫ t b f ( x ) d x \int_a^b f(x) dx=\lim\limits_{t \to a^+}{\int_t^b f(x) dx} abf(x)dx=ta+limtbf(x)dx,这时也称反常积分 ∫ a b f ( x ) d x \int_a^b f(x) dx abf(x)dx 收敛。如果上述极限不存在,则称反常积分 ∫ a b f ( x ) d x \int_a^b f(x) dx abf(x)dx 发散。
② 设 f ( x ) f(x) f(x) [ a , b ) [a,b) [a,b) 上的连续函数,点 b b b 为函数 f ( x ) f(x) f(x) 的瑕点,可类似的定义函数 f ( x ) f(x) f(x) 在区间 [ a , b ] [a,b] [a,b] 上的反常积分 ∫ a b f ( x ) d x = lim ⁡ t → b − ∫ a t f ( x ) d x \int_a^b f(x) dx=\lim\limits_{t \to b^-}{\int_a^t f(x) dx} abf(x)dx=tblimatf(x)dx.
③ 设 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上除点 c ( a < c < b ) c(a<c<b) c(a<c<b) 外连续,点 c c c 为函数 f ( x ) f(x) f(x) 的瑕点。如果反常积分 ∫ a c f ( x ) d x \int_a^c f(x) dx acf(x)dx ∫ c b f ( x ) d x \int_c^b f(x) dx cbf(x)dx 都收敛,则称反常积分 ∫ a b f ( x ) d x \int_a^b f(x) dx abf(x)dx 收敛,且 ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int_a^b f(x) dx=\int_a^c f(x) dx+\int_c^b f(x) dx abf(x)dx=acf(x)dx+cbf(x)dx,如果 ∫ a c f ( x ) d x \int_a^c f(x) dx acf(x)dx ∫ c b f ( x ) d x \int_c^b f(x) dx cbf(x)dx 之一发散,则称 ∫ a b f ( x ) d x \int_a^b f(x) dx abf(x)dx 发散。

五、联系与区别

以下为作者根据已有资料分析出的自己的理解。我们可以将原函数、不定积分、定积分、变限积分、反常积分可分为两大体系。
① 原函数体系:原函数(或不定积分)
② 定积分体系:定积分、变限积分、反常积分
1)定积分:有限积分区间的有界函数对应的几何意义下的曲边梯形的面积。
2)变限积分:积分区间变化的定积分。
3)反常积分:积分区间无限或者被积函数无界的定积分。
原函数的体系偏向于理论化,是基于导数建立的;定积分的体系偏向应用化,是基于面积建立的,其定义有其对应的几何背景。
原函数体系强制要求函数 f ( x ) f(x) f(x) 与对应的原函数 ∫ f ( x ) d x \int f(x) dx f(x)dx 满足 f ( x ) ⇋ 积分 求导 ∫ f ( x ) d x f(x) \xleftrightharpoons[\text{积分}]{\text{求导}} \int f(x) dx f(x)求导 积分f(x)dx 这样的可逆变换关系,便于从理论上进行推导并演化。
定积分体系基于面积的特性可以消除有限第一类间断点对积分的影响,即有第一类间断点的函数 f ( x ) f(x) f(x) 在原函数体系中不能积分,而在定积分体系中可以积分。从而也并不强制要求函数 f ( x ) f(x) f(x) 与对应的原函数 ∫ f ( x ) d x \int f(x) dx f(x)dx 具有可逆变换关系,允许 ( ∫ a x f ( t ) d t ) ′ (\int_a^x f(t) dt)' (axf(t)dt) 在某些点的值与 f ( x ) f(x) f(x)不一致。从定积分、变限积分和反常积分的区别可以得到在定积分体系内只需要分析积分区间的有限性和函数的有界性。这两个体系如同两个不同的工具库,当 f ( x ) f(x) f(x) 满足原函数体系的标准时,便能运用那些以原函数体系作为背景推导出的公式工具。当 f ( x ) f(x) f(x) 满足定积分体系的标准时,便能运用那些以定积分体系作为背景推导出的公式工具。这里有个完美的 f ( x ) f(x) f(x),他便是连续的 f ( x ) f(x) f(x),连续的 f ( x ) f(x) f(x) 完美到既满足原函数的体系标准又满足定积分的体系标准,于是连续的 f ( x ) f(x) f(x) 就能运用两个体系下的工具库了。 f ( x ) f(x) f(x) 参与两体系校验的流程图如下所示。

积分体系流程图


总结

原函数体系限制严格,可以定性的分析函数的积分变换;定积分体系可以定量的分析函数的积分变换,能充分有效的运用到实际应用中。

附录

附1

用反证法证明含有第一类间断点、无穷间断点的函数 f ( x ) f(x) f(x) 在包含该间断点的区间内必没有原函数 F ( x ) F(x) F(x).

证明:设 F ( x ) F(x) F(x) f ( x ) f(x) f(x) I I I 内的一个原函数,则 F ( x ) F(x) F(x) I I I 内可导,且 F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x),并设 x = x 0 ∈ I x=x_0 \in I x=x0I F ′ ( x ) F'(x) F(x) 的间断点。下面分别讨论 x = x 0 x=x_0 x=x0 为可去间断点、跳跃间断点、无穷间断点的情况。
I. x = x 0 x=x_0 x=x0 为可去间断点,即 lim ⁡ x → x 0 F ′ ( x ) \lim\limits_{x \to x_0}F'(x) xx0limF(x) 存在且为 A A A,但 F ′ ( x 0 ) ≠ A F'(x_0) \neq A F(x0)=A,而 F ′ ( x 0 ) = lim ⁡ x → x 0 F ( x ) − F ( x 0 ) x − x 0 = 洛必达法则 lim ⁡ x → x 0 F ′ ( x ) = lim ⁡ x → x 0 f ( x ) = A F'(x_0)=\lim_{x \to x_0}{\frac{F(x)-F(x_0)}{x-x_0}}\xlongequal{\text{洛必达法则}}\lim_{x \to x_0}{F'(x)}=\lim_{x \to x_0}{f(x)}=A F(x0)=xx0limxx0F(x)F(x0)洛必达法则 xx0limF(x)=xx0limf(x)=A,与 F ′ ( x 0 ) ≠ A F'(x_0) \neq A F(x0)=A 矛盾。
II. x = x 0 x=x_0 x=x0 为跳跃间断点,即 lim ⁡ x → x 0 + F ′ ( x ) \lim\limits_{x \to x_0^+}F'(x) xx0+limF(x) 存在且为 A + A_+ A+ lim ⁡ x → x 0 − F ′ ( x ) \lim\limits_{x \to x_0^-}F'(x) xx0limF(x) 存在且为 A − A_- A,但 A + ≠ A − A_+ \neq A_- A+=A,而 F + ′ ( x 0 ) = lim ⁡ x → x 0 + F ( x ) − F ( x 0 ) x − x 0 = 洛必达法则 lim ⁡ x → x 0 + F ′ ( x ) = A + , F − ′ ( x 0 ) = lim ⁡ x → x 0 − F ( x ) − F ( x 0 ) x − x 0 = 洛必达法则 lim ⁡ x → x 0 − F ′ ( x ) = A − F'_+(x_0)=\lim_{x \to x_0^+}{\frac{F(x)-F(x_0)}{x-x_0}}\xlongequal{\text{洛必达法则}}\lim_{x \to x_0^+}{F'(x)}=A_+, F'_-(x_0)=\lim_{x \to x_0^-}{\frac{F(x)-F(x_0)}{x-x_0}}\xlongequal{\text{洛必达法则}}\lim_{x \to x_0^-}{F'(x)}=A_- F+(x0)=xx0+limxx0F(x)F(x0)洛必达法则 xx0+limF(x)=A+,F(x0)=xx0limxx0F(x)F(x0)洛必达法则 xx0limF(x)=A,又因为原函数的定义 任意一点 都有 F ′ ( x ) F'(x) F(x) 存在,可知 F ′ ( x 0 ) F'(x_0) F(x0) 是存在的,即 F + ′ ( x 0 ) = F − ′ ( x 0 ) F'_+(x_0)=F'_-(x_0) F+(x0)=F(x0),也即 A + = A − A_+=A_- A+=A,与 A + ≠ A − A_+ \neq A_- A+=A 矛盾。
III. x = x 0 x=x_0 x=x0 为无穷间断点,即 lim ⁡ x → x 0 F ′ ( x ) = ∞ \lim\limits_{x \to x_0}F'(x)=\infin xx0limF(x)=,而 F ′ ( x 0 ) = lim ⁡ x → x 0 F ( x ) − F ( x 0 ) x − x 0 = 洛必达法则 lim ⁡ x → x 0 F ′ ( x ) = lim ⁡ x → x 0 f ( x ) = ∞ F'(x_0)=\lim_{x \to x_0}{\frac{F(x)-F(x_0)}{x-x_0}}\xlongequal{\text{洛必达法则}}\lim_{x \to x_0}{F'(x)}=\lim_{x \to x_0}{f(x)}=\infin F(x0)=xx0limxx0F(x)F(x0)洛必达法则 xx0limF(x)=xx0limf(x)=,又因为原函数的定义 任意一点 都有 F ′ ( x ) F'(x) F(x) 存在,可知 F ′ ( x 0 ) F'(x_0) F(x0) 是存在的,矛盾。

附2

导函数的性质:
性质1:设 f ( x ) f(x) f(x) 在区间 I I I 上可导,则其导函数 f ′ ( x ) f'(x) f(x) 在区间 I I I 上不存在第一类间断点。
证明:反证法。若 f ′ ( x ) f'(x) f(x) 在区间 I I I 上存在第一类间断点 x = x 0 x=x_0 x=x0,则 lim ⁡ x → x 0 − f ′ ( x ) \lim\limits_{x \to x_0^-}{f'(x)} xx0limf(x) lim ⁡ x → x 0 + f ′ ( x ) \lim\limits_{x \to x_0^+}{f'(x)} xx0+limf(x) 都存在。因为 f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0 处可导,所以 f ′ ( x 0 ) f'(x_0) f(x0) 存在,且有 f ′ ( x 0 ) = f − ′ ( x 0 ) = lim ⁡ x → x 0 − f ( x ) − f ( x 0 ) x − x 0 = 洛必达法则 lim ⁡ x → x 0 − f ′ ( x ) f'(x_0)=f'_-(x_0)=\lim\limits_{x \to x_0^-}\frac{f(x)-f(x_0)}{x-x_0}\xlongequal{\text{洛必达法则}}\lim\limits_{x \to x_0^-}{f'(x)} f(x0)=f(x0)=xx0limxx0f(x)f(x0)洛必达法则 xx0limf(x) f ′ ( x 0 ) = f + ′ ( x 0 ) = lim ⁡ x → x 0 + f ( x ) − f ( x 0 ) x − x 0 = 洛必达法则 lim ⁡ x → x 0 + f ′ ( x ) f'(x_0)=f'_+(x_0)=\lim\limits_{x \to x_0^+}\frac{f(x)-f(x_0)}{x-x_0}\xlongequal{\text{洛必达法则}}\lim\limits_{x \to x_0^+}{f'(x)} f(x0)=f+(x0)=xx0+limxx0f(x)f(x0)洛必达法则 xx0+limf(x) 从而得到 lim ⁡ x → x 0 − f ′ ( x ) = lim ⁡ x → x 0 + f ′ ( x ) \lim\limits_{x \to x_0^-}{f'(x)}=\lim\limits_{x \to x_0^+}{f'(x)} xx0limf(x)=xx0+limf(x),矛盾。

性质2:介值性。设 f ( x ) f(x) f(x) 在区间 [ a , b ] [a,b] [a,b] 上可导,且 f + ′ ( a ) ≠ f − ′ ( b ) f'_+(a) \neq f'_-(b) f+(a)=f(b) μ \mu μ 为介于 f + ′ ( a ) f'_+(a) f+(a) f − ′ ( b ) f'_-(b) f(b) 之间的任何值,则至少存在一个 ξ ∈ ( a , b ) \xi \in (a,b) ξ(a,b) 使 f ′ ( ξ ) = μ f'(\xi)=\mu f(ξ)=μ.
证明:因 f + ′ ( a ) ≠ f − ′ ( b ) f'_+(a) \neq f'_-(b) f+(a)=f(b),设 f + ′ ( a ) < f − ′ ( b ) f'_+(a)<f'_-(b) f+(a)<f(b). 并设 F ( x ) = f ( x ) − μ x F(x)=f(x)-\mu x F(x)=f(x)μx,则函数 F ( x ) F(x) F(x) [ a , b ] [a,b] [a,b] 上可导,且 F + ′ ( a ) = lim ⁡ x → a + F ( x ) − F ( a ) x − a = f + ′ ( a ) − μ < 0 F'_+(a)=\lim\limits_{x \to a^+}\frac{F(x)-F(a)}{x-a}=f'_+(a)-\mu<0 F+(a)=xa+limxaF(x)F(a)=f+(a)μ<0 F − ′ ( b ) = lim ⁡ x → b − F ( x ) − F ( b ) x − b = f − ′ ( b ) − μ > 0 F'_-(b)=\lim\limits_{x \to b^-}\frac{F(x)-F(b)}{x-b}=f'_-(b)-\mu>0 F(b)=xblimxbF(x)F(b)=f(b)μ>0 根据极限的保号性,可知: ∃ ξ 1 > 0 , x ∈ ( a , a + ξ 1 ) , F ( x ) − F ( a ) x − a < 0 ⇒ F ( x ) < F ( a ) \exist \xi_1>0, x \in (a,a+\xi_1), \frac{F(x)-F(a)}{x-a}<0 \xRightarrow{} F(x)<F(a) ξ1>0,x(a,a+ξ1),xaF(x)F(a)<0 F(x)<F(a) ∃ ξ 2 > 0 , x ∈ ( b − ξ 2 , b ) , F ( x ) − F ( b ) x − b > 0 ⇒ F ( x ) < F ( b ) \exist \xi_2>0, x \in (b-\xi_2,b), \frac{F(x)-F(b)}{x-b}>0 \xRightarrow{} F(x)<F(b) ξ2>0,x(bξ2,b),xbF(x)F(b)>0 F(x)<F(b) F ( a ) F(a) F(a) F ( b ) F(b) F(b) 均不是函数 F ( x ) F(x) F(x) [ a , b ] [a,b] [a,b] 上的最小值,又因 F ( x ) F(x) F(x) 连续可知 F ( x ) F(x) F(x) 定可以取得最小值,则其最小值必在 ( a , b ) (a,b) (a,b) 内取到,设函数 F ( x ) F(x) F(x) ( a , b ) (a,b) (a,b) 内的最小值点是,根据费马定理可得 F ′ ( ξ ) = 0 F'(\xi)=0 F(ξ)=0,即 f ′ ( ξ ) = μ f'(\xi)=\mu f(ξ)=μ.

推论1:设 f ( x ) f(x) f(x) 在区间 [ a , b ] [a,b] [a,b] 上可导,且 f + ′ ( a ) f − ′ ( b ) < 0 f'_+(a)f'_-(b)<0 f+(a)f(b)<0,则 ∃ ξ ∈ ( a , b ) \exist \xi \in (a,b) ξ(a,b) 使得 f ′ ( ξ ) = 0 f'(\xi)=0 f(ξ)=0.
证明:设 f + ′ ( a ) > 0 f'_+(a)>0 f+(a)>0 f − ′ ( b ) < 0 f'_-(b)<0 f(b)<0,可得 f + ′ ( a ) = lim ⁡ x → a + f ( x ) − f ( a ) x − a > 0 ⇒ ∃ ξ 1 > 0 , x ∈ ( a , a + ξ 1 ) , f ( x ) > f ( a ) f'_+(a)=\lim\limits_{x \to a^+}\frac{f(x)-f(a)}{x-a} > 0 \xRightarrow{} \exist \xi_1>0, x \in (a, a+\xi_1),f(x)>f(a) f+(a)=xa+limxaf(x)f(a)>0 ξ1>0,x(a,a+ξ1),f(x)>f(a) f − ′ ( b ) = lim ⁡ x → b − f ( x ) − f ( b ) x − b < 0 ⇒ ∃ ξ 2 > 0 , x ∈ ( b − ξ 2 , b ) , f ( x ) > f ( b ) f'_-(b)=\lim\limits_{x \to b^-}\frac{f(x)-f(b)}{x-b} < 0 \xRightarrow{} \exist \xi_2>0, x \in (b-\xi_2, b),f(x)>f(b) f(b)=xblimxbf(x)f(b)<0 ξ2>0,x(bξ2,b),f(x)>f(b) f ( a ) f(a) f(a) f ( b ) f(b) f(b) 均不是 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上的最大值,则 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b) 内取得最大值,由费马定理可知,存在 ξ ∈ ( a , b ) \xi \in (a,b) ξ(a,b),使得 f ′ ( ξ ) = 0 f'(\xi)=0 f(ξ)=0.

推论2:设 f ( x ) f(x) f(x) 在区间 [ a , b ] [a,b] [a,b] 上可导,且 f ′ ( x ) ≠ 0 f'(x) \neq 0 f(x)=0,则在 [ a , b ] [a,b] [a,b] 上要么恒有 f ′ ( x ) > 0 f'(x)>0 f(x)>0,要么恒有 f ′ ( x ) < 0 f'(x)<0 f(x)<0.
证明:反证法。若在 [ a , b ] [a,b] [a,b] 上存在 x 0 x_0 x0 x 1 x_1 x1 使得 f ′ ( x 0 ) f ′ ( x 1 ) < 0 f'(x_0)f'(x_1)<0 f(x0)f(x1)<0,则由推论1可知在 x 0 x_0 x0 x 1 x_1 x1 之间必存在 ξ \xi ξ 使得 f ′ ( ξ ) = 0 f'(\xi)=0 f(ξ)=0,矛盾。

用导函数的两个特性证明含有第一类间断点、无穷间断点的函数 f ( x ) f(x) f(x) 在包含该间断点的区间内必没有原函数 F ( x ) F(x) F(x).
证明:由原函数的定义可知,若 F ( x ) F(x) F(x) f ( x ) f(x) f(x) 的原函数,则 F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x) ,由导函数的性质1可知 F ′ ( x ) F'(x) F(x) 无第一类间断点,因此 f ( x ) f(x) f(x) 不包含第一类间断点。

  • 4
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值