二重积分实际上就是二次积分。积分下限需要小于积分上限,假设不小于,转换为积分下限小于积分上限,然后加上负号。一般不考察太直接的,没有什么技术含量的题一般不考察。给的建议只有复盘和练习。画的线,先接触到的点是积分下限,后接触到的点是积分上限,是写在后面的,先进行的积分,积分上下限表示的函数是和积分变量一致的。比如,积分变量是 d y dy dy ,那么积分上下限都是 y ,当然是关于 x 的函数,用 x 表示的函数 y 。文字描述比较绕,实际操作非常非常简单。
古尔金定理
实际上从微元法可以推导出来。
V
=
∬
D
2
π
r
d
σ
V=\iint\limits_{D}2\pi rd\sigma
V=D∬2πrdσ
是用来求旋转体体积的公式,假设是绕 x 轴或者 y 轴旋转,直接用定积分的应用里面的公式, V x = π ∫ a b y 2 ( x ) d x V y = 2 π ∫ a b x ⋅ y ( x ) d x V_x=\pi\int_a^by^2(x)dx\\[0.5cm]V_y=2\pi\int_a^bx\cdot y(x)dx Vx=π∫aby2(x)dxVy=2π∫abx⋅y(x)dx,假设是绕一个一般的直线旋转,则使用古尔金定理。反正都是套公式。
雅可比换元法
就是把 x 和 y 全部换成 u 和 v ,积分变量,积分区域都要换掉,然后还需要乘上一个雅可比行列式的系数的绝对值。
∣
α
x
α
u
α
x
α
v
α
y
α
u
α
y
α
v
∣
\begin{vmatrix} \frac{\alpha x}{\alpha u} & \frac{\alpha x}{\alpha v} \\[0.5cm] \frac{\alpha y }{\alpha u} & \frac{\alpha y}{ \alpha v} \\ \end{vmatrix}
αuαxαuαyαvαxαvαy
指数函数和三角函数结合的积分公式
∫ e a x s i n b x d x = ∣ ( e a x ) ′ ( s i n b x ) ′ e a x s i n b x ∣ a 2 + b 2 + C ∫ e a x c o s b x d x = ∣ ( e a x ) ′ ( c o s b x ) ′ e a x c o s b x ∣ a 2 + b 2 + C \int e^{ax}sinbxdx=\frac{ \begin{vmatrix} (e^{ax})' & (sinbx)' \\ e^{ax} & sinbx \\ \end{vmatrix} }{a^2+b^2}+C\\[0.5cm]\int e^{ax}cosbxdx=\frac{ \begin{vmatrix} (e^{ax})' & (cosbx)' \\ e^{ax} & cosbx \\ \end{vmatrix} }{a^2+b^2}+C ∫eaxsinbxdx=a2+b2 (eax)′eax(sinbx)′sinbx +C∫eaxcosbxdx=a2+b2 (eax)′eax(cosbx)′cosbx +C
二重积分的比较定理
∣ ∬ D f ( x , y ) d σ ∣ ≤ ∬ D ∣ f ( x , y ) ∣ d σ |\iint\limits_D f(x,y)d\sigma|\leq\iint\limits_D|f(x,y)|d\sigma ∣D∬f(x,y)dσ∣≤D∬∣f(x,y)∣dσ
二重积分是一个数字
定积分也是一个数字。p91 定积分的性质,定积分是一个数字。是一个具体的数字。虽然表达式看起来有一堆变量,但是最后是可以算出来一个数字的。
二重积分几何意义
被积函数为正,二重积分为曲顶柱体的体积,被积函数为负数,二重积分表示体积的相反数。我们可以根据这个性质来计算二重积分,比如说,被积函数是一个半圆,积分区域是一个圆,那么构成的曲顶柱体是一个上半球,可以用球的体积公式来进行计算。
V
=
4
3
π
r
3
V=\frac43\pi r^3
V=34πr3
对于积分来说,单个点的取值不影响最后的结果。所以我们通常可以把积分区域的边界点模糊化(假设这个边界点不方便我们解题)
幂函数
交点是 (1,1) ,在 (0,1) 这个区间,指数小的比较大。管中窥豹就可以了。其他区间是相反的,不再赘述。经常和单调函数,二重积分的比较定理一块考察,并且单调函数一般是单调递减的,这样考察起来比较有意思。
正切和对数函数
一些常见的函数常用来比较大小。比较大小感觉完全可以考一道选择题,五分。价值五分。完全就是白送五分。
二次积分
为什么我们把二重积分转换为二次积分,二次积分为什么叫二次积分?二次积分是,先对 y 积分,把积分结果当作被积函数,再对 x 积分,这是先对 y 再对 x 积分,也就是积分了两次,或者说二次,所以称之为二次积分,x 和 y 交换顺序也是同理。我的笔记这里,不是教材,仅考虑一种情况,另一种情况是同理可得,我们在这里仅考虑 X 型区域。X 型区域,我们是先对 y 积分,然后把积分结果作为被积函数,再对 x 积分。先积分的部分写在二次积分的后面,或者更具体地,写在二次积分的右边。假设积分变量是 y ,那么积分上下限是关于 x 的函数,后积分的部分,也就是对于 x 积分的部分,积分上下限是确定的数字(或者参数)。步骤是取点,画线,投影,积分。积分上限需要大于积分下限。
下面描述一下我对于取点,画线,投影,积分的理解。还是以 X 型区域为例,我们在 x 轴上面取一个点,当然这个点需要在要求的区间之内,比如说区间是 ( a , b ) (a,b) (a,b) ,对于积分来说开区间和闭区间是无所谓的。以随便取的这个点作为端点做一条射线,首先交的点作为积分下限,后面相交的点作为积分上限,当然这个是不一定的,可能还是得考虑具体情况,正负情况之类的,这个投影实际上就是找关于 x 的函数,让这个函数作为积分上下限。积分就是求两次积分,先对 y 求积分,然后把积分结果作为被积函数,再对 x 进行积分。至此,二重积分计算完毕,二重积分是一个数字,所以最后的答案是一个具体的数字。
不可积分函数
实际上也不是不可积分,我们只是描述为不可积分。因为这些函数的原函数不能用初等函数的形式表示。一般称之为恶人。六大恶人:
e
x
2
,
e
−
x
2
,
s
i
n
x
x
,
c
o
s
x
x
,
1
l
n
x
,
t
a
n
x
x
e^{x^{2}},e^{-x^2},\frac{sinx}{x},\frac{cosx}{x},\frac{1}{lnx},\frac{tanx}{x}
ex2,e−x2,xsinx,xcosx,lnx1,xtanx,这里还可以补充几个。
s
i
n
x
2
,
c
o
s
x
2
,
s
i
n
1
x
,
c
o
s
1
x
sinx^2,cosx^2,sin\frac{1}{x},cos\frac{1}{x}
sinx2,cosx2,sinx1,cosx1 ,还真是凑齐十大恶人了。笑死。假设出现这种不可积分的函数,我们可以考虑转换积分的区域,让我们的二重积分可以计算出来。
积分上下限
假设极点在边界或者内部,积分下限就是 0 ,假设积分区域是圆,那么积分上限是半径。也就是说和角度没有关系了。是一个固定的常数。观察可以发现,极坐标的二次积分更加简洁,甚至只有一种类型,就是先对 r 进行积分,然后把结果作为被积函数,然后对 θ \theta θ 进行积分。仿照 X 型的二次积分,我们可以把极坐标的二次积分称为 θ \theta θ 型。笑死。
极坐标
I = ∬ D f ( r c o s θ , r s i n θ ) r d r d θ I=\iint\limits_Df(rcos\theta,rsin\theta)rdrd\theta I=D∬f(rcosθ,rsinθ)rdrdθ,圆形区域,圆环区域,扇形区域,被积函数是 f ( x 2 + y 2 ) f(x^2+y^2) f(x2+y2) 或者 f ( x 2 + y 2 ) f(\sqrt{x^2+y^2}) f(x2+y2) 时,考虑用极坐标求解。
总结
千万不要认为自己笨,有时间就多复习就好了。多重复几遍就一定可以学得非常非常好。