数学复习笔记 7

前言

现在复习线代基础,慢慢打基础。。

转置

方阵转置之后行列式保持不变。我的笔记感觉主要不是整理知识点,主要是把我的一些理解记录下来。这才是我自己的东西,那些需要记住的知识和内容记住就好了。记住转置有四个性质,在讲义 20 页。我非常喜欢那种利用现有知识证明不了的性质,意味着我们需要学习的内容少了一些。。

行列式的乘法难以证明,只能是记住。行列式的乘法和矩阵的乘法不一样,矩阵的乘法不能交换,除非两个矩阵可以交换,笑死。

对于矩阵的等式

可以两边同时取行列式。

对称矩阵和反对称矩阵

矩阵这个可以简称阵。对称阵实际上就是关于主对角线对阵。对称的东西大部分时候感觉是美的。转置之后和原来的阵是一致的,那么矩阵为对称阵。

反对称阵转置之后,和原来的矩阵式相反的。

天然可交换的矩阵

A   a n d   E A \ and \ E A and E

实际上线代和想象中还是不一样。还是有一些挑战性的。要慢慢地从头算到尾,因为很可能看起来比较容易,一算就寄掉了,算寄掉了和不会没有思路寄掉了本质上都是得不到分数,在我看来没有什么区别,没有哪个是更加高贵的,我的唯一目标就是得分。保持正能量,好好加油。线性代数一定要考满分。我一定可以。

没有底气的本质原因

我觉得就是一些公式没有记住,假设一些公式完全记住了,肯定底气十足。

复习

整理知识点和思路。简单的矩阵计算实在是简单。迹就是主对角线上每个元素的和。

伴随矩阵

一定是方阵。我们研究的大部分矩阵,感觉都是方阵。自己看绝对注意不到这个细节,就是转置的细节,所以看网课是很有必要的。还有就是代数余子式是有系数的,系数和行列式的元素无关,和所处的位置有关,要根据位置算逆序数。奥,也不是算逆序数,是要算一个系数。这里只有代数余子式,没有行列式的具体元素,和行列式的具体元素无关,这里不是行列式的展开定理的应用,要注意区分。

二阶矩阵的伴随矩阵

主对角线调换位置,副对角线加负号,这个太简单了,一定要记住。伴随矩阵。

万能公式

A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA=AA=AE
这个公式非常重要。这两个矩阵也是天然可交换的。这是第二组天然可交换的矩阵。

逆矩阵

一定是方阵。前面的伴随矩阵也要求是方阵。矩阵没有根号次方。矩阵没有商运算。

A A − 1 = E AA^{-1}=E AA1=E

这两个矩阵也是天然可交换。

可逆的等价条件

∣ A ∣ ≠ 0 |A|\neq0 A=0
行列式可以判断矩阵是否可逆。

逆矩阵

可以发现逆矩阵的运算有很多题型。不敢想把这些东西学完自己能掌握多厉害的解题能力,实际上也就那样,线代本来就简单,拿下满分感觉是基本要求。掀不起内心的一丝波澜。平平淡淡。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三冬四夏会不会有点漫长

一块钱也是支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值